summaryrefslogtreecommitdiff
path: root/bin/Proof_Of_Concept_PELT.py
diff options
context:
space:
mode:
authorjfalkenhagen <jfalkenhagen@uos.de>2020-07-20 23:48:21 +0200
committerjfalkenhagen <jfalkenhagen@uos.de>2020-07-20 23:48:21 +0200
commitbf49cf3ccee8c6d3c91c6a2ac81d7923a35b198e (patch)
tree3f07594b5b82ec9b3b678fcab9be3d4ea09f79f8 /bin/Proof_Of_Concept_PELT.py
parente15ac967c7e9b1b9f781ee9478f3b1e723d6177a (diff)
bin/Proof_Of_Concept_PELT: Parametrisierung von raw_states sollte eigentlich vernünftig klappen. Für mindestens TX klappt das aber nicht.
Diffstat (limited to 'bin/Proof_Of_Concept_PELT.py')
-rw-r--r--bin/Proof_Of_Concept_PELT.py694
1 files changed, 456 insertions, 238 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index de47d4a..75cdce6 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -1,4 +1,5 @@
import json
+import os
import time
import sys
import getopt
@@ -9,7 +10,12 @@ from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt
import ruptures as rpt
import numpy as np
+
+from dfatool.functions import analytic
from dfatool.loader import RawData
+from dfatool import parameters
+from dfatool.model import ParallelParamFit
+from dfatool.utils import by_name_to_by_param
# from scipy.cluster.hierarchy import dendrogram, linkage # for graphical display
@@ -396,6 +402,8 @@ if __name__ == '__main__':
"pen_modifier= "
"plotting= "
"refinement_thresh= "
+ "cache_dicts "
+ "cache_loc= "
)
opt_filename = None
opt_verbose = False
@@ -412,6 +420,7 @@ if __name__ == '__main__':
opt_pen_modifier = None
opt_plotting = False
opt_refinement_thresh = None
+ opt_cache_loc = None
try:
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))
@@ -495,6 +504,12 @@ if __name__ == '__main__':
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(-1)
+ if 'cache_dicts' in opt:
+ if 'cache_loc' in opt:
+ opt_cache_loc = opt['cache_loc']
+ else:
+ print_error("If \"cache_dicts\" is set, \"cache_loc\" must be provided.")
+ sys.exit(-1)
except getopt.GetoptError as err:
print(err, file=sys.stderr)
sys.exit(-1)
@@ -506,250 +521,453 @@ if __name__ == '__main__':
"Will only refine the state which is present in " + opt_filename + " if necessary.")
with open(opt_filename, 'r') as f:
configurations = json.load(f)
+
+ # for i in range(0, 7):
+ # signal = np.array(configurations[i]['offline'][0]['uW'])
+ # plt.plot(signal)
+ # plt.xlabel('Time [us]')
+ # plt.ylabel('Power [mW]')
+ # plt.show()
+ # sys.exit()
+
# loop through all traces check if refinement is necessary
- resulting_sequence_list = []
- for num_config, measurements_by_config in enumerate(configurations):
- # loop through all occurrences of the looked at state
- print_info("Looking at state '" + measurements_by_config['name'] + "' with params: "
- + str(measurements_by_config['parameter']))
- refine = False
- print_info("Checking if refinement is necessary...")
- for measurement in measurements_by_config['offline']:
- # loop through measurements of particular state
- # an check if state needs refinement
- signal = measurement['uW']
- # mean = measurement['uW_mean']
- if needs_refinement(signal, opt_refinement_thresh) and not refine:
- print_info("Refinement is necessary!")
- refine = True
- if not refine:
- print_info("No refinement necessary for state '" + measurements_by_config['name']
- + "' with params: " + str(measurements_by_config['parameter']))
+ # resulting_sequence_list = []
+ # search for param_names, by_param and by_name files
+ by_param_file = None
+ by_name_file = None
+ param_names_file = None
+ if opt_cache_loc is not None:
+ flag = False
+ by_name_loc = os.path.join(opt_cache_loc, "by_name.txt")
+ by_param_loc = os.path.join(opt_cache_loc, "by_param.txt")
+ param_names_loc = os.path.join(opt_cache_loc, "param_names.txt")
+ if os.path.isfile(by_name_loc) and os.path.getsize(by_name_loc) > 0:
+ by_name_file = open(by_name_loc, "r")
+ else:
+ print_error("In " + opt_cache_loc + " is no by_name.txt.")
+ flag = True
+ if os.path.isfile(by_param_loc) and os.path.getsize(by_param_loc) > 0:
+ by_param_file = open(by_param_loc, "r")
+ else:
+ print_error("In " + opt_cache_loc + " is no by_param.txt.")
+ flag = True
+ if os.path.isfile(param_names_loc) and os.path.getsize(param_names_loc) > 0:
+ param_names_file = open(param_names_loc, "r")
else:
- # assume that all measurements of the same param configuration are fundamentally
- # similar -> calculate penalty for first measurement, use it for all
- if opt_pen_override is None:
- signal = np.array(measurements_by_config['offline'][0]['uW'])
- normed_signal = norm_signal(signal)
- penalty = calculate_penalty_value(normed_signal, model=opt_model,
- range_min=opt_range_min,
- range_max=opt_range_max,
- num_processes=opt_num_processes,
- jump=opt_jump, S=opt_S,
- pen_modifier=opt_pen_modifier)
- penalty = penalty[0]
+ print_error("In " + opt_cache_loc + " is no param_names.txt.")
+ flag = True
+ if flag:
+ print_info("The cache will be build.")
+
+ if None in (by_param_file, by_name_file, param_names_file):
+ state_durations_by_config = []
+ state_consumptions_by_config = []
+ for num_config, measurements_by_config in enumerate(configurations):
+ # loop through all occurrences of the looked at state
+ print_info("Looking at state '" + measurements_by_config['name'] + "' with params: "
+ + str(measurements_by_config['parameter']) + "(" + str(num_config + 1) + "/"
+ + str(len(configurations)) + ")")
+ refine = False
+ print_info("Checking if refinement is necessary...")
+ for measurement in measurements_by_config['offline']:
+ # loop through measurements of particular state
+ # an check if state needs refinement
+ signal = measurement['uW']
+ # mean = measurement['uW_mean']
+ if needs_refinement(signal, opt_refinement_thresh) and not refine:
+ print_info("Refinement is necessary!")
+ refine = True
+ if not refine:
+ print_info("No refinement necessary for state '" + measurements_by_config['name']
+ + "' with params: " + str(measurements_by_config['parameter']))
else:
- penalty = opt_pen_override
- # build arguments for parallel excecution
- print_info("Starting raw_states calculation.")
- raw_states_calc_args = []
- for num_measurement, measurement in enumerate(measurements_by_config['offline']):
- raw_states_calc_args.append((num_measurement, measurement, penalty,
- opt_model, opt_jump))
-
- raw_states_list = [None] * len(measurements_by_config['offline'])
- raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
- # extracting result and putting it in correct order -> index of raw_states_list
- # entry still corresponds with index of measurement in measurements_by_states
- # -> If measurements are discarded the correct ones are easily recognized
- for ret_val in raw_states_res:
- num_trace = ret_val[0]
- raw_states = ret_val[1]
- avg_std = ret_val[2]
- change_avg_std = ret_val[3]
- # TODO: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
- # int sein oder nicht? Es scheint auch vernünftig zu klappen...
- raw_states_list[num_trace] = raw_states
- print_info("The average standard deviation for the newly found states in "
- + "measurement No. " + str(num_trace) + " is " + str(avg_std))
- print_info("That is a reduction of " + str(change_avg_std))
- print_info("Finished raw_states calculation.")
- num_states_array = [int()] * len(raw_states_list)
- i = 0
- for i, x in enumerate(raw_states_list):
- num_states_array[i] = len(x)
- avg_num_states = np.mean(num_states_array)
- num_states_dev = np.std(num_states_array)
- print_info("On average " + str(avg_num_states)
- + " States have been found. The standard deviation"
- + " is " + str(num_states_dev))
- # TODO: MAGIC NUMBER
- if num_states_dev > 1:
- print_warning("The number of states varies strongly across measurements."
- " Consider choosing a larger value for S or using the "
- "pen_modifier option.")
- time.sleep(5)
- # TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
- # Einfach Durchschnitt nehmen?
- # Preliminary decision: Further on only use the traces, which have the most frequent state count
- counts = np.bincount(num_states_array)
- num_raw_states = np.argmax(counts)
- print_info("Choose " + str(num_raw_states) + " as number of raw_states.")
- i = 0
- cluster_labels_list = []
- num_cluster_list = []
- for num_trace, raw_states in enumerate(raw_states_list):
- # iterate through raw states from measurements
- if len(raw_states) == num_raw_states:
- # build array with power values to cluster these
- value_to_cluster = np.zeros((num_raw_states, 2))
- j = 0
- for s in raw_states:
- value_to_cluster[j][0] = s[2]
- value_to_cluster[j][1] = 0
- j = j + 1
- # linked = linkage(value_to_cluster, 'single')
- #
- # labelList = range(1, 11)
- #
- # plt.figure(figsize=(10, 7))
- # dendrogram(linked,
- # orientation='top',
- # distance_sort='descending',
- # show_leaf_counts=True)
- # plt.show()
- # TODO: Automatic detection of number of clusters. Aktuell noch MAGIC NUMBER
- # im distance_threshold
- cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True,
- affinity='euclidean',
- linkage='ward',
- distance_threshold=opt_refinement_thresh * 100)
- # cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
- # linkage='ward')
- cluster.fit_predict(value_to_cluster)
- # print_info("Cluster labels:\n" + str(cluster.labels_))
- # plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow')
- # plt.show()
- cluster_labels_list.append((num_trace, cluster.labels_))
- num_cluster_list.append((num_trace, cluster.n_clusters_))
- i = i + 1
+ # assume that all measurements of the same param configuration are fundamentally
+ # similar -> calculate penalty for first measurement, use it for all
+ if opt_pen_override is None:
+ signal = np.array(measurements_by_config['offline'][0]['uW'])
+ normed_signal = norm_signal(signal)
+ penalty = calculate_penalty_value(normed_signal, model=opt_model,
+ range_min=opt_range_min,
+ range_max=opt_range_max,
+ num_processes=opt_num_processes,
+ jump=opt_jump, S=opt_S,
+ pen_modifier=opt_pen_modifier)
+ penalty = penalty[0]
else:
- print_info("Discarding measurement No. " + str(num_trace) + " because it "
- + "did not recognize the number of raw_states correctly.")
- num_used_measurements = len(raw_states_list)
- if i != len(raw_states_list):
- if i / len(raw_states_list) <= 0.5:
- print_warning("Only used " + str(i) + "/" + str(len(raw_states_list))
- + " Measurements for refinement. "
- "Others did not recognize number of states correctly."
- "\nYou should verify the integrity of the measurements.")
+ penalty = opt_pen_override
+ # build arguments for parallel excecution
+ print_info("Starting raw_states calculation.")
+ raw_states_calc_args = []
+ for num_measurement, measurement in enumerate(measurements_by_config['offline']):
+ raw_states_calc_args.append((num_measurement, measurement, penalty,
+ opt_model, opt_jump))
+
+ raw_states_list = [None] * len(measurements_by_config['offline'])
+ raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
+ # extracting result and putting it in correct order -> index of raw_states_list
+ # entry still corresponds with index of measurement in measurements_by_states
+ # -> If measurements are discarded the correct ones are easily recognized
+ for ret_val in raw_states_res:
+ num_trace = ret_val[0]
+ raw_states = ret_val[1]
+ avg_std = ret_val[2]
+ change_avg_std = ret_val[3]
+ # TODO: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
+ # int sein oder nicht? Es scheint auch vernünftig zu klappen...
+ raw_states_list[num_trace] = raw_states
+ print_info("The average standard deviation for the newly found states in "
+ + "measurement No. " + str(num_trace) + " is " + str(avg_std))
+ print_info("That is a reduction of " + str(change_avg_std))
+ print_info("Finished raw_states calculation.")
+ num_states_array = [int()] * len(raw_states_list)
+ i = 0
+ for i, x in enumerate(raw_states_list):
+ num_states_array[i] = len(x)
+ avg_num_states = np.mean(num_states_array)
+ num_states_dev = np.std(num_states_array)
+ print_info("On average " + str(avg_num_states)
+ + " States have been found. The standard deviation"
+ + " is " + str(num_states_dev))
+ # TODO: MAGIC NUMBER
+ if num_states_dev > 1:
+ print_warning("The number of states varies strongly across measurements."
+ " Consider choosing a larger value for S or using the "
+ "pen_modifier option.")
+ time.sleep(5)
+ # TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
+ # Einfach Durchschnitt nehmen?
+ # Preliminary decision: Further on only use the traces, which have the most
+ # frequent state count
+ counts = np.bincount(num_states_array)
+ num_raw_states = np.argmax(counts)
+ print_info("Choose " + str(num_raw_states) + " as number of raw_states.")
+ # iterate through all found breakpoints and determine start and end points as well
+ # as power consumption
+ states_duration_list = [0] * num_raw_states
+ states_consumption_list = [0] * num_raw_states
+ num_used_measurements = 0
+ for num_trace, raw_states in enumerate(raw_states_list):
+ if len(raw_states) == num_raw_states:
+ num_used_measurements = num_used_measurements + 1
+ # calced_state = (start_time, end_time, mean_power, std_dev)
+ for num_state, s in enumerate(raw_states):
+ state_duration = s[1] - s[0]
+ state_consumption = s[2]
+ states_duration_list[num_state] = \
+ states_duration_list[num_state] + state_duration
+ states_consumption_list[num_state] = \
+ states_consumption_list[num_state] + state_consumption
+ else:
+ print_info("Discarding measurement No. " + str(num_trace) + " because it "
+ + "did not recognize the number of raw_states correctly.")
+ for i, x in enumerate(states_duration_list):
+ states_duration_list[i] = x / num_used_measurements
+ for i, x in enumerate(states_consumption_list):
+ states_consumption_list[i] = x / num_used_measurements
+ if num_used_measurements != len(raw_states_list):
+ if num_used_measurements / len(raw_states_list) <= 0.5:
+ print_warning("Only used " + str(num_used_measurements) + "/"
+ + str(len(raw_states_list)) + " Measurements for refinement. "
+ + "Others did not recognize number of states correctly."
+ + "\nYou should verify the integrity of the measurements.")
+ else:
+ print_info("Used " + str(num_used_measurements) + "/"
+ + str(len(raw_states_list)) + " Measurements for refinement. "
+ + "Others did not recognize number of states correctly.")
+ num_used_measurements = i
+ # TODO: DEBUG Kram
+ sys.exit(0)
else:
- print_info("Used " + str(i) + "/" + str(len(raw_states_list))
- + " Measurements for refinement. "
- "Others did not recognize number of states correctly.")
- num_used_measurements = i
- # TODO: DEBUG Kram
- sys.exit(0)
+ print_info("Used all available measurements.")
+
+ state_durations_by_config.append((num_config, states_duration_list))
+ state_consumptions_by_config.append((num_config, states_consumption_list))
+ # # TODO:
+ # if num_config == 6:
+ # print("BRECHE AUS")
+ # break
+
+ # combine all state durations and consumptions to parametrized model
+
+ # this is only necessary because at this state only linear automatons can be modeled.
+ num_states_array = [int()] * len(state_consumptions_by_config)
+ for i, (_, states_consumption_list) in enumerate(state_consumptions_by_config):
+ num_states_array[i] = len(states_consumption_list)
+ counts = np.bincount(num_states_array)
+ num_raw_states = np.argmax(counts)
+ usable_configs = len(state_consumptions_by_config)
+ # param_list identical for each raw_state
+ # TODO: Kann man die echt einfach rausziehen aus der json? Ich hab sie nicht gefunden...
+ # Nur für jede Messung. Aber da sind die ja ohnehin identisch.
+ param_list = []
+ param_names = configurations[0]['offline_aggregates']['paramkeys'][0]
+ print_info("param_names: " + str(param_names))
+ for num_config, states_consumption_list in state_consumptions_by_config:
+ if len(states_consumption_list) != num_raw_states:
+ print_warning("Config No." + str(num_config) + " not usable yet due to different "
+ + "number of states. This hints a correlation between parameters and "
+ + "the structure of the resulting automaton. This will be possibly be"
+ + " supported in a future version of this tool.")
+ usable_configs = usable_configs - 1
else:
- print_info("Used all available measurements.")
-
- num_states = np.argmax(np.bincount([elem[1] for elem in num_cluster_list]))
- avg_per_state_list = [None] * len(cluster_labels_list)
- used_clusters = 0
- for number, (num_trace, labels) in enumerate(cluster_labels_list):
- if num_cluster_list[number][1] == num_states:
- avg_per_state = [0] * num_states
- count_per_state = [0] * num_states
- raw_states = raw_states_list[num_trace]
- for num_label, label in enumerate(labels):
- count_per_state[label] = count_per_state[label] + 1
- avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2]
- for i, _ in enumerate(avg_per_state):
- avg_per_state[i] = avg_per_state[i] / count_per_state[i]
- avg_per_state_list[number] = avg_per_state
- used_clusters = used_clusters + 1
- else:
- # hopefully this does not happen regularly
- print_info("Discarding measurement " + str(number)
- + " because the clustering yielded not matching results.")
- num_used_measurements = num_used_measurements - 1
- if num_used_measurements == 0:
- print_error("Something went terribly wrong. Discarded all measurements.")
- # continue
- sys.exit(-1)
- # flattend version for clustering:
- values_to_cluster = np.zeros((num_states * used_clusters, 2))
- index = 0
- for avg_per_state in avg_per_state_list:
- if avg_per_state is not None:
- for avg in avg_per_state:
- values_to_cluster[index][0] = avg
- values_to_cluster[index][1] = 0
- index = index + 1
- # plt.scatter(values_to_cluster[:, 0], values_to_cluster[:, 1])
- # plt.show()
- cluster = AgglomerativeClustering(n_clusters=num_states)
- cluster.fit_predict(values_to_cluster)
- # Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die
- # ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels.
- # Alle identischen Zustände haben identische Labels. Dann vllt bei resulting
- # sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist.
- new_labels_list = []
- new_labels = []
- i = 0
- for label in cluster.labels_:
- new_labels.append(label)
- i = i + 1
- if i == num_states:
- new_labels_list.append(new_labels)
- new_labels = []
- i = 0
- # only the selected measurements are present in new_labels.
- # new_labels_index should not be incremented, if not selected_measurement is skipped
- new_labels_index = 0
- # cluster_labels_list contains all measurements -> if measurement is skipped
- # still increment the index
- index = 0
- for elem in avg_per_state_list:
- if elem is not None:
- for number, label in enumerate(cluster_labels_list[index][1]):
- cluster_labels_list[index][1][number] = \
- new_labels_list[new_labels_index][label]
- new_labels_index = new_labels_index + 1
- else:
- # override not selected measurement labels to avoid choosing the wrong ones.
- for number, label in enumerate(cluster_labels_list[index][1]):
- cluster_labels_list[index][1][number] = -1
- index = index + 1
- resulting_sequence = [None] * num_raw_states
- i = 0
- confidence = 0
- for x in resulting_sequence:
- j = 0
- test_list = []
- for arr in [elem[1] for elem in cluster_labels_list]:
- if num_cluster_list[j][1] != num_states:
- j = j + 1
- else:
- if -1 in arr:
- print_error("Bei Janis beschweren! Fehler beim Umbenennen der"
- " Zustände wahrscheinlich.")
- sys.exit(-1)
- test_list.append(arr[i])
- j = j + 1
- bincount = np.bincount(test_list)
- resulting_sequence[i] = np.argmax(bincount)
- confidence = confidence + bincount[resulting_sequence[i]] / np.sum(bincount)
- i = i + 1
- confidence = confidence / len(resulting_sequence)
- print_info("Confidence of resulting sequence is " + str(confidence)
- + " while using " + str(num_used_measurements) + "/"
- + str(len(raw_states_list)) + " measurements.")
- #print(resulting_sequence)
- resulting_sequence_list.append((num_config, resulting_sequence))
- # TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat
- # erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die
- # Loops. Wie erkenne ich die? Es können beliebig viele Loops an beliebigen Stellen
- # auftreten.
- # TODO: Die Zustandsfolgen werden sich nicht einfach in isomorphe(-einzelne wegfallende bzw.
- # hinzukommende Zustände) Automaten übersetzten lassen. Basiert alles auf dem Problem:
- # wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche
- # Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme,
- # 2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines
- # Zustands ja nicht mehr ändern. Kann sicherlich immernoch Falschclustering erzeugen...
- for num_config, sequence in resulting_sequence_list:
- print_info("NO. config:" + str(num_config))
- print_info(sequence)
+ param_list.append(configurations[num_config]['offline_aggregates']['param'][0])
+ print_info("param_list: " + str(param_list))
+
+ if usable_configs == len(state_consumptions_by_config):
+ print_info("All configs usable.")
+ else:
+ print_info("Using only " + str(usable_configs) + " Configs.")
+ by_name = {}
+ for i in range(num_raw_states):
+ consumptions_for_state = []
+ durations_for_state = []
+ for j, (_, states_consumption_list) in enumerate(state_consumptions_by_config):
+ consumptions_for_state.append(states_consumption_list[i])
+ durations_for_state.append(state_durations_by_config[j][1][i])
+ name = "state_" + str(i)
+ state_dict = {
+ "param": param_list,
+ "power": consumptions_for_state,
+ "duration": durations_for_state,
+ "attributes": ["power", "duration"]
+ }
+ by_name[name] = state_dict
+ by_param = by_name_to_by_param(by_name)
+ if opt_cache_loc is not None:
+ by_name_loc = os.path.join(opt_cache_loc, "by_name.txt")
+ by_param_loc = os.path.join(opt_cache_loc, "by_param.txt")
+ param_names_loc = os.path.join(opt_cache_loc, "param_names.txt")
+ f = open(by_name_loc, "w")
+ f.write(str(by_name))
+ f.close()
+ f = open(by_param_loc, "w")
+ f.write(str(by_param))
+ f.close()
+ f = open(param_names_loc, "w")
+ f.write(str(param_names))
+ f.close()
+ else:
+ by_name_text = str(by_name_file.read())
+ by_name = eval(by_name_text)
+ by_param_text = str(by_param_file.read())
+ by_param = eval(by_param_text)
+ param_names_text = str(param_names_file.read())
+ param_names = eval(param_names_text)
+
+ # t = 0
+ # last_pow = 0
+ # for key in by_name.keys():
+ # end_t = t + np.mean(by_name[key]["duration"])
+ # power = np.mean(by_name[key]["power"])
+ # plt.vlines(t, min(last_pow, power), max(last_pow, power))
+ # plt.hlines(power, t, end_t)
+ # t = end_t
+ # last_pow = power
+ # plt.show()
+ stats = parameters.ParamStats(by_name, by_param, param_names, dict())
+ paramfit = ParallelParamFit(by_param)
+ for state_name in by_name.keys():
+ for num_param, param_name in enumerate(param_names):
+ if stats.depends_on_param(state_name, "power", param_name):
+ paramfit.enqueue(state_name, "power", num_param, param_name)
+ if stats.depends_on_param(state_name, "duration", param_name):
+ paramfit.enqueue(state_name, "duration", num_param, param_name)
+ print_info("State " + state_name + "s power depends on param " + param_name + ":" +
+ str(stats.depends_on_param(state_name, "power", param_name))
+ )
+ print_info("State " + state_name + "s duration depends on param " + param_name + ":"
+ + str(stats.depends_on_param(state_name, "duration", param_name))
+ )
+ paramfit.fit()
+ fit_res_dur_list = []
+ fit_res_pow_list = []
+ for state_name in by_name.keys():
+ fit_power = paramfit.get_result(state_name, "power")
+ fit_duration = paramfit.get_result(state_name, "duration")
+ combined_fit_power = analytic.function_powerset(fit_power, param_names, 0)
+ combined_fit_duration = analytic.function_powerset(fit_duration, param_names, 0)
+ combined_fit_power.fit(by_param, state_name, "power")
+ if not combined_fit_power.fit_success:
+ print_warning("Fitting(power) for state " + state_name + " was not succesful!")
+ combined_fit_duration.fit(by_param, state_name, "duration")
+ if not combined_fit_duration.fit_success:
+ print_warning("Fitting(duration) for state " + state_name + " was not succesful!")
+ fit_res_pow_list.append(combined_fit_power)
+ fit_res_dur_list.append(combined_fit_duration)
+
+
+ # TODO: removed clustering (temporarily), since it provided too much dificultys
+ # at the current state
+ # i = 0
+ # cluster_labels_list = []
+ # num_cluster_list = []
+ # for num_trace, raw_states in enumerate(raw_states_list):
+ # # iterate through raw states from measurements
+ # if len(raw_states) == num_raw_states:
+ # # build array with power values to cluster these
+ # value_to_cluster = np.zeros((num_raw_states, 2))
+ # j = 0
+ # for s in raw_states:
+ # value_to_cluster[j][0] = s[2]
+ # value_to_cluster[j][1] = 0
+ # j = j + 1
+ # # linked = linkage(value_to_cluster, 'single')
+ # #
+ # # labelList = range(1, 11)
+ # #
+ # # plt.figure(figsize=(10, 7))
+ # # dendrogram(linked,
+ # # orientation='top',
+ # # distance_sort='descending',
+ # # show_leaf_counts=True)
+ # # plt.show()
+ # # TODO: Automatic detection of number of clusters. Aktuell noch MAGIC NUMBER
+ # # im distance_threshold
+ # cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True,
+ # affinity='euclidean',
+ # linkage='ward',
+ # distance_threshold=opt_refinement_thresh * 100)
+ # # cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
+ # # linkage='ward')
+ # cluster.fit_predict(value_to_cluster)
+ # # print_info("Cluster labels:\n" + str(cluster.labels_))
+ # # plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow')
+ # # plt.show()
+ # cluster_labels_list.append((num_trace, cluster.labels_))
+ # num_cluster_list.append((num_trace, cluster.n_clusters_))
+ # i = i + 1
+ # else:
+ # print_info("Discarding measurement No. " + str(num_trace) + " because it "
+ # + "did not recognize the number of raw_states correctly.")
+ # num_used_measurements = len(raw_states_list)
+ # if i != len(raw_states_list):
+ # if i / len(raw_states_list) <= 0.5:
+ # print_warning("Only used " + str(i) + "/" + str(len(raw_states_list))
+ # + " Measurements for refinement. "
+ # "Others did not recognize number of states correctly."
+ # "\nYou should verify the integrity of the measurements.")
+ # else:
+ # print_info("Used " + str(i) + "/" + str(len(raw_states_list))
+ # + " Measurements for refinement. "
+ # "Others did not recognize number of states correctly.")
+ # num_used_measurements = i
+ # # TODO: DEBUG Kram
+ # sys.exit(0)
+ # else:
+ # print_info("Used all available measurements.")
+ #
+ # num_states = np.argmax(np.bincount([elem[1] for elem in num_cluster_list]))
+ # avg_per_state_list = [None] * len(cluster_labels_list)
+ # used_clusters = 0
+ # for number, (num_trace, labels) in enumerate(cluster_labels_list):
+ # if num_cluster_list[number][1] == num_states:
+ # avg_per_state = [0] * num_states
+ # count_per_state = [0] * num_states
+ # raw_states = raw_states_list[num_trace]
+ # for num_label, label in enumerate(labels):
+ # count_per_state[label] = count_per_state[label] + 1
+ # avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2]
+ # for i, _ in enumerate(avg_per_state):
+ # avg_per_state[i] = avg_per_state[i] / count_per_state[i]
+ # avg_per_state_list[number] = avg_per_state
+ # used_clusters = used_clusters + 1
+ # else:
+ # # hopefully this does not happen regularly
+ # print_info("Discarding measurement " + str(number)
+ # + " because the clustering yielded not matching results.")
+ # num_used_measurements = num_used_measurements - 1
+ # if num_used_measurements == 0:
+ # print_error("Something went terribly wrong. Discarded all measurements.")
+ # # continue
+ # sys.exit(-1)
+ # # flattend version for clustering:
+ # values_to_cluster = np.zeros((num_states * used_clusters, 2))
+ # index = 0
+ # for avg_per_state in avg_per_state_list:
+ # if avg_per_state is not None:
+ # for avg in avg_per_state:
+ # values_to_cluster[index][0] = avg
+ # values_to_cluster[index][1] = 0
+ # index = index + 1
+ # # plt.scatter(values_to_cluster[:, 0], values_to_cluster[:, 1])
+ # # plt.show()
+ # cluster = AgglomerativeClustering(n_clusters=num_states)
+ # cluster.fit_predict(values_to_cluster)
+ # # Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die
+ # # ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels.
+ # # Alle identischen Zustände haben identische Labels. Dann vllt bei resulting
+ # # sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist.
+ # new_labels_list = []
+ # new_labels = []
+ # i = 0
+ # for label in cluster.labels_:
+ # new_labels.append(label)
+ # i = i + 1
+ # if i == num_states:
+ # new_labels_list.append(new_labels)
+ # new_labels = []
+ # i = 0
+ # # only the selected measurements are present in new_labels.
+ # # new_labels_index should not be incremented, if not selected_measurement is skipped
+ # new_labels_index = 0
+ # # cluster_labels_list contains all measurements -> if measurement is skipped
+ # # still increment the index
+ # index = 0
+ # for elem in avg_per_state_list:
+ # if elem is not None:
+ # for number, label in enumerate(cluster_labels_list[index][1]):
+ # cluster_labels_list[index][1][number] = \
+ # new_labels_list[new_labels_index][label]
+ # new_labels_index = new_labels_index + 1
+ # else:
+ # # override not selected measurement labels to avoid choosing the wrong ones.
+ # for number, label in enumerate(cluster_labels_list[index][1]):
+ # cluster_labels_list[index][1][number] = -1
+ # index = index + 1
+ # resulting_sequence = [None] * num_raw_states
+ # i = 0
+ # confidence = 0
+ # for x in resulting_sequence:
+ # j = 0
+ # test_list = []
+ # for arr in [elem[1] for elem in cluster_labels_list]:
+ # if num_cluster_list[j][1] != num_states:
+ # j = j + 1
+ # else:
+ # if -1 in arr:
+ # print_error("Bei Janis beschweren! Fehler beim Umbenennen der"
+ # " Zustände wahrscheinlich.")
+ # sys.exit(-1)
+ # test_list.append(arr[i])
+ # j = j + 1
+ # bincount = np.bincount(test_list)
+ # resulting_sequence[i] = np.argmax(bincount)
+ # confidence = confidence + bincount[resulting_sequence[i]] / np.sum(bincount)
+ # i = i + 1
+ # confidence = confidence / len(resulting_sequence)
+ # print_info("Confidence of resulting sequence is " + str(confidence)
+ # + " while using " + str(num_used_measurements) + "/"
+ # + str(len(raw_states_list)) + " measurements.")
+ # #print(resulting_sequence)
+ # resulting_sequence_list.append((num_config, resulting_sequence))
+ # # TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat
+ # # erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die
+ # # Loops. Wie erkenne ich die? Es können beliebig viele Loops an beliebigen Stellen
+ # # auftreten.
+ # # TODO: Die Zustandsfolgen werden sich nicht einfach in isomorphe(-einzelne wegfallende bzw.
+ # # hinzukommende Zustände) Automaten übersetzten lassen. Basiert alles auf dem Problem:
+ # # wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche
+ # # Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme,
+ # # 2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines
+ # # Zustands ja nicht mehr ändern. Kann sicherlich immernoch Falschclustering erzeugen...
+ # for num_config, sequence in resulting_sequence_list:
+ # print_info("NO. config:" + str(num_config))
+ # print_info(sequence)
+ #
+ #
+ #
+ #
+
elif ".tar" in opt_filename:
# open with dfatool