diff options
author | jfalkenhagen <jfalkenhagen@uos.de> | 2020-07-16 16:39:19 +0200 |
---|---|---|
committer | jfalkenhagen <jfalkenhagen@uos.de> | 2020-07-16 16:39:19 +0200 |
commit | 98d23807e35cc211415c7e0c887f1b1b502f10e5 (patch) | |
tree | ebb649c585166e546dda704990ed4c5eeb95519f /bin/analyze-timing.py | |
parent | a00ffc0e32ddc72a8faceec4344432cdbf3b90c7 (diff) | |
parent | af4cc108b5c5132a991a2b83d258ed55e985936f (diff) |
Merge branch 'master' into janis
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-x | bin/analyze-timing.py | 52 |
1 files changed, 16 insertions, 36 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py index 4039f45..ddd49ec 100755 --- a/bin/analyze-timing.py +++ b/bin/analyze-timing.py @@ -75,12 +75,14 @@ Options: import getopt import json +import logging import re import sys from dfatool import plotter -from dfatool.dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate -from dfatool.dfatool import gplearn_to_function -from dfatool.dfatool import CrossValidator +from dfatool.loader import TimingData, pta_trace_to_aggregate +from dfatool.functions import gplearn_to_function +from dfatool.model import AnalyticModel +from dfatool.validation import CrossValidator from dfatool.utils import filter_aggregate_by_param from dfatool.parameters import prune_dependent_parameters @@ -170,7 +172,6 @@ def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq): if __name__ == "__main__": ignored_trace_indexes = [] - discard_outliers = None safe_functions_enabled = False function_override = {} show_models = [] @@ -183,8 +184,9 @@ if __name__ == "__main__": try: optspec = ( "plot-unparam= plot-param= show-models= show-quality= " - "ignored-trace-indexes= discard-outliers= function-override= " + "ignored-trace-indexes= function-override= " "filter-param= " + "log-level= " "cross-validate= " "corrcoef param-info " "with-safe-functions hwmodel= export-energymodel=" @@ -202,9 +204,6 @@ if __name__ == "__main__": if 0 in ignored_trace_indexes: print("[E] arguments to --ignored-trace-indexes start from 1") - if "discard-outliers" in opt: - discard_outliers = float(opt["discard-outliers"]) - if "function-override" in opt: for function_desc in opt["function-override"].split(";"): state_or_tran, attribute, *function_str = function_desc.split(" ") @@ -237,6 +236,13 @@ if __name__ == "__main__": else: opt["filter-param"] = list() + if "log-level" in opt: + numeric_level = getattr(logging, opt["log-level"].upper(), None) + if not isinstance(numeric_level, int): + print(f"Invalid log level: {loglevel}", file=sys.stderr) + sys.exit(1) + logging.basicConfig(level=numeric_level) + except getopt.GetoptError as err: print(err) sys.exit(2) @@ -297,30 +303,6 @@ if __name__ == "__main__": model.stats.param_dependence_ratio(trans, "duration", param), ) ) - if model.stats.has_codependent_parameters(trans, "duration", param): - print( - "{:24s} co-dependencies: {:s}".format( - "", - ", ".join( - model.stats.codependent_parameters( - trans, "duration", param - ) - ), - ) - ) - for param_dict in model.stats.codependent_parameter_value_dicts( - trans, "duration", param - ): - print("{:24s} parameter-aware for {}".format("", param_dict)) - # import numpy as np - # safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y) - # ratio_by_value = safe_div(model.stats.stats['write']['duration']['lut_by_param_values']['max_retry_count'], model.stats.stats['write']['duration']['std_by_param_values']['max_retry_count']) - # err_mode = np.seterr('warn') - # dep_by_value = ratio_by_value > 0.5 - # np.seterr(**err_mode) - # Eigentlich sollte hier ein paar mal True stehen, ist aber nicht so... - # und warum ist da eine non-power-of-two Zahl von True-Einträgen in der Matrix? 3 stück ist komisch... - # print(dep_by_value) if xv_method == "montecarlo": static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count) @@ -423,14 +405,12 @@ if __name__ == "__main__": "{:10s}: {:10s}: {}".format( trans, attribute, - param_info(trans, attribute)["function"]._model_str, + param_info(trans, attribute)["function"].model_function, ) ) print( "{:10s} {:10s} {}".format( - "", - "", - param_info(trans, attribute)["function"]._regression_args, + "", "", param_info(trans, attribute)["function"].model_args ) ) |