diff options
author | Daniel Friesel <derf@finalrewind.org> | 2017-04-03 15:04:15 +0200 |
---|---|---|
committer | Daniel Friesel <derf@finalrewind.org> | 2017-04-03 15:04:15 +0200 |
commit | 00e57331b1c7ef2b1f402f41e1223308e0d8ce61 (patch) | |
tree | 05e9b4223072582a5a6843de6d9845213a94f341 /lib/dfatool.py |
initial commit
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-x | lib/dfatool.py | 291 |
1 files changed, 291 insertions, 0 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py new file mode 100755 index 0000000..8a07b50 --- /dev/null +++ b/lib/dfatool.py @@ -0,0 +1,291 @@ +#!/usr/bin/env python3 + +import csv +from itertools import chain, combinations +import json +import numpy as np +import os +from scipy.cluster.vq import kmeans2 +import struct +import sys +import tarfile + +def running_mean(x, N): + cumsum = np.cumsum(np.insert(x, 0, 0)) + return (cumsum[N:] - cumsum[:-N]) / N + +def is_numeric(n): + try: + int(n) + return True + except ValueError: + return False + +def aggregate_measures(aggregate, actual): + aggregate_array = np.array([aggregate] * len(actual)) + return regression_measures(aggregate_array, np.array(actual)) + +def regression_measures(predicted, actual): + deviations = predicted - actual + measures = { + 'mae' : np.mean(np.abs(deviations), dtype=np.float64), + 'msd' : np.mean(deviations**2, dtype=np.float64), + 'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64), + 'ssr' : np.sum(deviations**2, dtype=np.float64), + } + + if np.all(actual != 0): + measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure + if np.all(np.abs(predicted) + np.abs(actual) != 0): + measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100 + + return measures + +def powerset(iterable): + s = list(iterable) + return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) + +class Keysight: + + def __init__(self): + pass + + def load_data(self, filename): + with open(filename) as f: + for i, l in enumerate(f): + pass + timestamps = np.ndarray((i-3), dtype=float) + currents = np.ndarray((i-3), dtype=float) + # basically seek back to start + with open(filename) as f: + for _ in range(4): + next(f) + reader = csv.reader(f, delimiter=',') + for i, row in enumerate(reader): + timestamps[i] = float(row[0]) + currents[i] = float(row[2]) * -1 + return timestamps, currents + +class MIMOSA: + + def __init__(self, voltage, shunt): + self.voltage = voltage + self.shunt = shunt + self.r1 = 984 # "1k" + self.r2 = 99013 # "100k" + + def charge_to_current_nocal(self, charge): + ua_max = 1.836 / self.shunt * 1000000 + ua_step = ua_max / 65535 + return charge * ua_step + + def load_data(self, filename): + with tarfile.open(filename) as tf: + num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size + charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32) + triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8) + with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f: + content = f.read() + iterator = struct.iter_unpack('<I', content) + i = 0 + for word in iterator: + charges[i] = (word[0] >> 4) + triggers[i] = (word[0] & 0x08) >> 3 + i += 1 + return (charges, triggers) + + def currents_nocal(self, charges): + ua_max = 1.836 / self.shunt * 1000000 + ua_step = ua_max / 65535 + return charges.astype(np.double) * ua_step + + def trigger_edges(self, triggers): + trigidx = [] + prevtrig = triggers[0] + # the device is reset for MIMOSA calibration in the first 10s and may + # send bogus interrupts -> bogus triggers + for i in range(1000000, triggers.shape[0]): + trig = triggers[i] + if trig != prevtrig: + # Due to MIMOSA's integrate-read-reset cycle, the trigger + # appears two points (20µs) before the corresponding data + trigidx.append(i+2) + prevtrig = trig + return trigidx + + def calibration_edges(self, currents): + r1idx = 0 + r2idx = 0 + ua_r1 = self.voltage / self.r1 * 1000000 + # first second may be bogus + for i in range(100000, len(currents)): + if r1idx == 0 and currents[i] > ua_r1 * 0.6: + r1idx = i + elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4: + r2idx = i + # 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2 + # allow 5ms buffer in both directions to account for bouncing relais contacts + return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500 + + def calibration_function(self, charges, cal_edges): + dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges + if dis_start < 0: + dis_start = 0 + chg_r0 = charges[dis_start:dis_end] + chg_r1 = charges[r1_start:r1_end] + chg_r2 = charges[r2_start:r2_end] + cal_0_mean = np.mean(chg_r0) + cal_0_std = np.std(chg_r0) + cal_r1_mean = np.mean(chg_r1) + cal_r1_std = np.std(chg_r1) + cal_r2_mean = np.mean(chg_r2) + cal_r2_std = np.std(chg_r2) + + ua_r1 = self.voltage / self.r1 * 1000000 + ua_r2 = self.voltage / self.r2 * 1000000 + + b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean) + b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean) + b_total = (ua_r1 - 0) / (cal_r1_mean - cal_0_mean) + + a_lower = -b_lower * cal_0_mean + a_upper = -b_upper * cal_r2_mean + a_total = -b_total * cal_0_mean + + if self.shunt == 680: + # R1 current is higher than shunt range -> only use R2 for calibration + def calfunc(charge): + if charge < cal_0_mean: + return 0 + else: + return charge * b_lower + a_lower + else: + def calfunc(charge): + if charge < cal_0_mean: + return 0 + if charge <= cal_r2_mean: + return charge * b_lower + a_lower + else: + return charge * b_upper + a_upper + ua_r2 + + caldata = { + 'edges' : [x * 10 for x in cal_edges], + 'offset': cal_0_mean, + 'offset2' : cal_r2_mean, + 'slope_low' : b_lower, + 'slope_high' : b_upper, + 'add_low' : a_lower, + 'add_high' : a_upper, + 'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage, + 'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage, + 'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage, + 'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage, + 'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage, + 'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage, + } + + #print("if charge < %f : return 0" % cal_0_mean) + #print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower)) + #print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2)) + + return calfunc, caldata + + def calcgrad(self, currents, threshold): + grad = np.gradient(running_mean(currents * self.voltage, 10)) + # len(grad) == len(currents) - 9 + subst = [] + lastgrad = 0 + for i in range(len(grad)): + # minimum substate duration: 10ms + if np.abs(grad[i]) > threshold and i - lastgrad > 50: + # account for skew introduced by running_mean and current + # ramp slope (parasitic capacitors etc.) + subst.append(i+10) + lastgrad = i + if lastgrad != i: + subst.append(i+10) + return subst + + # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere + # Sache nach noetiger threshold. postprocessing mit + # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen + # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad)) + # TODO bei substates / index foo den offset durch running_mean beachten + # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter + # uebergaenge dadurch? + def gradfoo(self, currents): + gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10))) + gradmin = np.min(gradients) + gradmax = np.max(gradients) + threshold = np.mean([gradmin, gradmax]) + gradidx = self.calcgrad(currents, threshold) + num_substates = 2 + while len(gradidx) != num_substates: + if gradmax - gradmin < 0.1: + # We did our best + return threshold, gradidx + if len(gradidx) > num_substates: + gradmin = threshold + else: + gradmax = threshold + threshold = np.mean([gradmin, gradmax]) + gradidx = self.calcgrad(currents, threshold) + return threshold, gradidx + + def analyze_states(self, charges, trigidx, ua_func): + previdx = 0 + is_state = True + iterdata = [] + for idx in trigidx: + range_raw = charges[previdx:idx] + range_ua = ua_func(range_raw) + substates = {} + + if previdx != 0 and idx - previdx > 200: + thr, subst = 0, [] #self.gradfoo(range_ua) + if len(subst): + statelist = [] + prevsubidx = 0 + for subidx in subst: + statelist.append({ + 'duration': (subidx - prevsubidx) * 10, + 'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage), + 'uW_std' : np.std(range_ua[prevsubidx : subidx] * self.voltage), + }) + prevsubidx = subidx + substates = { + 'threshold' : thr, + 'states' : statelist, + } + + isa = 'state' + if not is_state: + isa = 'transition' + + data = { + 'isa': isa, + 'clip_rate' : np.mean(range_raw == 65535), + 'raw_mean': np.mean(range_raw), + 'raw_std' : np.std(range_raw), + 'uW_mean' : np.mean(range_ua * self.voltage), + 'uW_std' : np.std(range_ua * self.voltage), + 'us' : (idx - previdx) * 10, + } + + if 'states' in substates: + data['substates'] = substates + ssum = np.sum(list(map(lambda x : x['duration'], substates['states']))) + if ssum != data['us']: + print("ERR: duration %d vs %d" % (data['us'], ssum)) + + if isa == 'transition': + # subtract average power of previous state + # (that is, the state from which this transition originates) + data['uW_mean_delta'] = data['uW_mean'] - iterdata[-1]['uW_mean'] + data['timeout'] = iterdata[-1]['us'] + + iterdata.append(data) + + previdx = idx + is_state = not is_state + return iterdata |