summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py79
1 files changed, 66 insertions, 13 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index e56e0b0..0340427 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -47,6 +47,10 @@ def aggregate_measures(aggregate, actual):
return regression_measures(aggregate_array, np.array(actual))
def regression_measures(predicted, actual):
+ if type(predicted) != np.ndarray:
+ raise ValueError('first arg must be ndarray, is {}'.format(type(predicted)))
+ if type(actual) != np.ndarray:
+ raise ValueError('second arg must be ndarray, is {}'.format(type(actual)))
deviations = predicted - actual
if len(deviations) == 0:
return {}
@@ -204,20 +208,21 @@ class RawData:
if not 'offline_aggregates' in online_trace_part:
online_trace_part['offline_aggregates'] = {
- 'power_mean' : [],
+ 'power' : [],
'duration' : [],
'power_std' : [],
'energy' : [],
'clipping' : [],
- 'timeout' : [],
- 'rel_energy_prev' : [],
- 'rel_energy_next' : []
}
+ if online_trace_part['isa'] == 'transition':
+ online_trace_part['offline_aggregates']['timeout'] = []
+ online_trace_part['offline_aggregates']['rel_energy_prev'] = []
+ online_trace_part['offline_aggregates']['rel_energy_next'] = []
# Note: All state/transitions are 20us "too long" due to injected
# active wait states. These are needed to work around MIMOSA's
# relatively low sample rate of 100 kHz (10us) and removed here.
- online_trace_part['offline_aggregates']['power_mean'].append(
+ online_trace_part['offline_aggregates']['power'].append(
offline_trace_part['uW_mean'])
online_trace_part['offline_aggregates']['duration'].append(
offline_trace_part['us'] - 20)
@@ -282,7 +287,7 @@ class RawData:
'num_valid' : num_valid
}
-class Analysis:
+class EnergyModel:
def __init__(self, preprocessed_data):
self.traces = preprocessed_data
@@ -290,6 +295,20 @@ class Analysis:
self.by_arg = {}
self.by_param = {}
self.by_trace = {}
+ np.seterr('raise')
+ for runidx, run in enumerate(self.traces):
+ # if opts['ignore-trace-idx'] != runidx
+ for i, elem in enumerate(run['trace']):
+ if elem['name'] != 'UNINITIALIZED':
+ self._load_run_elem(i, elem)
+ self._aggregate_to_ndarray(self.by_name)
+
+ def _aggregate_to_ndarray(self, aggregate):
+ for elem in aggregate.values():
+ for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
+ if key in elem:
+ elem[key] = np.array(elem[key])
+
def _add_data_to_aggregate(self, aggregate, key, element):
if not key in aggregate:
@@ -304,13 +323,47 @@ class Analysis:
def _load_run_elem(self, i, elem):
self._add_data_to_aggregate(self.by_name, elem['name'], elem)
- def analyze(self):
- for runidx, run in enumerate(self.traces):
- # if opts['ignore-trace-idx'] != runidx
- for i, elem in enumerate(run['trace']):
- if elem['name'] != 'UNINITIALIZED':
- self._load_run_elem(i, elem)
- return self.by_name
+ def get_static(self):
+ static_model = {}
+ for name, elem in self.by_name.items():
+ static_model[name] = {}
+ for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
+ if key in elem:
+ try:
+ static_model[name][key] = np.mean(elem[key])
+ except RuntimeWarning:
+ print('[W] Got no data for {} {}'.format(name, key))
+ except FloatingPointError as fpe:
+ print('[W] Got no data for {} {}: {}'.format(name, key, fpe))
+
+ def getter(name, key, **kwargs):
+ return static_model[name][key]
+
+ return getter
+
+ def states(self):
+ return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'state', self.by_name.keys())))
+
+ def transitions(self):
+ return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'transition', self.by_name.keys())))
+
+ def assess(self, model_function):
+ for name, elem in sorted(self.by_name.items()):
+ print('{}:'.format(name))
+ if elem['isa'] == 'state':
+ predicted_data = np.array(list(map(lambda x: model_function(name, 'power'), elem['power'])))
+ measures = regression_measures(predicted_data, elem['power'])
+ print(' power: {:.2f}% / {:.0f} µW'.format(
+ measures['smape'], measures['mae']
+ ))
+ else:
+ for key in ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']:
+ predicted_data = np.array(list(map(lambda x: model_function(name, key), elem[key])))
+ measures = regression_measures(predicted_data, elem[key])
+ print(' {:10s}: {:.2f}% / {:.0f}'.format(
+ key, measures['smape'], measures['mae']
+ ))
+
class MIMOSA: