diff options
Diffstat (limited to 'lib/validation.py')
-rw-r--r-- | lib/validation.py | 238 |
1 files changed, 238 insertions, 0 deletions
diff --git a/lib/validation.py b/lib/validation.py new file mode 100644 index 0000000..ee147fe --- /dev/null +++ b/lib/validation.py @@ -0,0 +1,238 @@ +#!/usr/bin/env python3 + +import logging +import numpy as np + +logger = logging.getLogger(__name__) + + +def _xv_partitions_kfold(length, k=10): + """ + Return k pairs of training and validation sets for k-fold cross-validation on `length` items. + + In k-fold cross-validation, every k-th item is used for validation and the remainder is used for training. + As there are k ways to do this (items 0, k, 2k, ... vs. items 1, k+1, 2k+1, ... etc), this function returns k pairs of training and validation set. + + Note that this function operates on indices, not data. + """ + pairs = [] + num_slices = k + indexes = np.arange(length) + for i in range(num_slices): + training = np.delete(indexes, slice(i, None, num_slices)) + validation = indexes[i::num_slices] + pairs.append((training, validation)) + return pairs + + +def _xv_partition_montecarlo(length): + """ + Return training and validation set for Monte Carlo cross-validation on `length` items. + + This function operates on indices, not data. It randomly partitions range(length) into a list of training indices and a list of validation indices. + + The training set contains 2/3 of all indices; the validation set consits of the remaining 1/3. + + Example: 9 items -> training = [7, 3, 8, 0, 4, 2], validation = [ 1, 6, 5] + """ + shuffled = np.random.permutation(np.arange(length)) + border = int(length * float(2) / 3) + training = shuffled[:border] + validation = shuffled[border:] + return (training, validation) + + +class CrossValidator: + """ + Cross-Validation helper for model generation. + + Given a set of measurements and a model class, it will partition the + data into training and validation sets, train the model on the training + set, and assess its quality on the validation set. This is repeated + several times depending on cross-validation algorithm and configuration. + Reports the mean model error over all cross-validation runs. + """ + + def __init__(self, model_class, by_name, parameters, arg_count): + """ + Create a new CrossValidator object. + + Does not perform cross-validation yet. + + arguments: + model_class -- model class/type used for model synthesis, + e.g. PTAModel or AnalyticModel. model_class must have a + constructor accepting (by_name, parameters, arg_count) + and provide an `assess` method. + by_name -- measurements aggregated by state/transition/function/... name. + Layout: by_name[name][attribute] = list of data. Additionally, + by_name[name]['attributes'] must be set to the list of attributes, + e.g. ['power'] or ['duration', 'energy']. + """ + self.model_class = model_class + self.by_name = by_name + self.names = sorted(by_name.keys()) + self.parameters = sorted(parameters) + self.arg_count = arg_count + + def kfold(self, model_getter, k=10): + """ + Perform k-fold cross-validation and return average model quality. + + The by_name data is divided into 1-1/k training and 1/k validation in a deterministic manner. + After creating a model for the training set, the + model type returned by model_getter is evaluated on the validation set. + This is repeated k times; the average of all measures is returned to the user. + + arguments: + model_getter -- function with signature (model_object) -> model, + e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware + model with automatic parameter detection. + k -- step size for k-fold cross-validation. The validation set contains 100/k % of data. + + return value: + dict of model quality measures. + { + 'by_name' : { + for each name: { + for each attribute: { + 'mae' : mean of all mean absolute errors + 'mae_list' : list of the individual MAE values encountered during cross-validation + 'smape' : mean of all symmetric mean absolute percentage errors + 'smape_list' : list of the individual SMAPE values encountered during cross-validation + } + } + } + } + """ + + # training / validation subsets for each state and transition + subsets_by_name = dict() + training_and_validation_sets = list() + + for name in self.names: + sample_count = len(self.by_name[name]["param"]) + subsets_by_name[name] = list() + subsets_by_name[name] = _xv_partitions_kfold(sample_count, k) + + for i in range(k): + training_and_validation_sets.append(dict()) + for name in self.names: + training_and_validation_sets[i][name] = subsets_by_name[name][i] + + return self._generic_xv(model_getter, training_and_validation_sets) + + def montecarlo(self, model_getter, count=200): + """ + Perform Monte Carlo cross-validation and return average model quality. + + The by_name data is randomly divided into 2/3 training and 1/3 + validation. After creating a model for the training set, the + model type returned by model_getter is evaluated on the validation set. + This is repeated count times (defaulting to 200); the average of all + measures is returned to the user. + + arguments: + model_getter -- function with signature (model_object) -> model, + e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware + model with automatic parameter detection. + count -- number of validation runs to perform, defaults to 200 + + return value: + dict of model quality measures. + { + 'by_name' : { + for each name: { + for each attribute: { + 'mae' : mean of all mean absolute errors + 'mae_list' : list of the individual MAE values encountered during cross-validation + 'smape' : mean of all symmetric mean absolute percentage errors + 'smape_list' : list of the individual SMAPE values encountered during cross-validation + } + } + } + } + """ + + # training / validation subsets for each state and transition + subsets_by_name = dict() + training_and_validation_sets = list() + + for name in self.names: + sample_count = len(self.by_name[name]["param"]) + subsets_by_name[name] = list() + for _ in range(count): + subsets_by_name[name].append(_xv_partition_montecarlo(sample_count)) + + for i in range(count): + training_and_validation_sets.append(dict()) + for name in self.names: + training_and_validation_sets[i][name] = subsets_by_name[name][i] + + return self._generic_xv(model_getter, training_and_validation_sets) + + def _generic_xv(self, model_getter, training_and_validation_sets): + ret = {"by_name": dict()} + + for name in self.names: + ret["by_name"][name] = dict() + for attribute in self.by_name[name]["attributes"]: + ret["by_name"][name][attribute] = { + "mae_list": list(), + "rmsd_list": list(), + "smape_list": list(), + } + + for training_and_validation_by_name in training_and_validation_sets: + res = self._single_xv(model_getter, training_and_validation_by_name) + for name in self.names: + for attribute in self.by_name[name]["attributes"]: + for measure in ("mae", "rmsd", "smape"): + ret["by_name"][name][attribute][f"{measure}_list"].append( + res["by_name"][name][attribute][measure] + ) + + for name in self.names: + for attribute in self.by_name[name]["attributes"]: + for measure in ("mae", "rmsd", "smape"): + ret["by_name"][name][attribute][measure] = np.mean( + ret["by_name"][name][attribute][f"{measure}_list"] + ) + + return ret + + def _single_xv(self, model_getter, tv_set_dict): + training = dict() + validation = dict() + for name in self.names: + training[name] = {"attributes": self.by_name[name]["attributes"]} + validation[name] = {"attributes": self.by_name[name]["attributes"]} + + if "isa" in self.by_name[name]: + training[name]["isa"] = self.by_name[name]["isa"] + validation[name]["isa"] = self.by_name[name]["isa"] + + training_subset, validation_subset = tv_set_dict[name] + + for attribute in self.by_name[name]["attributes"]: + self.by_name[name][attribute] = np.array(self.by_name[name][attribute]) + training[name][attribute] = self.by_name[name][attribute][ + training_subset + ] + validation[name][attribute] = self.by_name[name][attribute][ + validation_subset + ] + + # We can't use slice syntax for 'param', which may contain strings and other odd values + training[name]["param"] = list() + validation[name]["param"] = list() + for idx in training_subset: + training[name]["param"].append(self.by_name[name]["param"][idx]) + for idx in validation_subset: + validation[name]["param"].append(self.by_name[name]["param"][idx]) + + training_data = self.model_class(training, self.parameters, self.arg_count) + training_model = model_getter(training_data) + validation_data = self.model_class(validation, self.parameters, self.arg_count) + + return validation_data.assess(training_model) |