From c6d4e8b0f4a9295006236f8f50cac6bc3e0d00db Mon Sep 17 00:00:00 2001 From: Birte Kristina Friesel Date: Mon, 24 Mar 2025 14:08:25 +0100 Subject: Workload is an EventSequenceModel, actually --- bin/workload.py | 4 +-- lib/behaviour.py | 77 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ lib/workload.py | 77 -------------------------------------------------------- 3 files changed, 79 insertions(+), 79 deletions(-) create mode 100644 lib/behaviour.py delete mode 100644 lib/workload.py diff --git a/bin/workload.py b/bin/workload.py index 5d71932..72b66bb 100755 --- a/bin/workload.py +++ b/bin/workload.py @@ -6,8 +6,8 @@ import logging import sys import dfatool.cli import dfatool.utils +from dfatool.behaviour import EventSequenceModel from dfatool.model import AnalyticModel -from dfatool.workload import Workload def main(): @@ -72,7 +72,7 @@ def main(): for attr in models[i].attributes(name): print(f" {name}.{attr} {param_info(name, attr)}") - workload = Workload(models) + workload = EventSequenceModel(models) aggregate = workload.eval_strs( args.event, aggregate=args.aggregate, diff --git a/lib/behaviour.py b/lib/behaviour.py new file mode 100644 index 0000000..402ddc7 --- /dev/null +++ b/lib/behaviour.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 + +import logging +from . import utils + +logger = logging.getLogger(__name__) + + +class EventSequenceModel: + def __init__(self, models): + self.models = models + + def _event_normalizer(self, event): + event_normalizer = lambda p: p + if "/" in event: + v1, v2 = event.split("/") + if utils.is_numeric(v1): + event = v2.strip() + event_normalizer = lambda p: utils.soft_cast_float(v1) / p + elif utils.is_numeric(v2): + event = v1.strip() + event_normalizer = lambda p: p / utils.soft_cast_float(v2) + else: + raise RuntimeError(f"Cannot parse '{event}'") + return event, event_normalizer + + def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False): + for event in events: + event, event_normalizer = self._event_normalizer(event) + nn, param = event.split("(") + name, action = nn.split(".") + param_model = None + ref_model = None + + for model in self.models: + if name in model.names and action in model.attributes(name): + ref_model = model + if use_lut: + param_model = model.get_param_lut(allow_none=True) + else: + param_model, param_info = model.get_fitted() + break + + if param_model is None: + raise RuntimeError(f"Did not find a model for {name}.{action}") + + param = param.removesuffix(")") + if param == "": + param = dict() + else: + param = utils.parse_conf_str(param) + + param_list = utils.param_dict_to_list(param, ref_model.parameters) + + if not use_lut and not param_info(name, action).is_predictable(param_list): + logging.warning( + f"Cannot predict {name}.{action}({param}), falling back to static model" + ) + + try: + event_output = event_normalizer( + param_model( + name, + action, + param=param_list, + ) + ) + except KeyError: + logging.error(f"Cannot predict {name}.{action}({param}) from LUT model") + raise + + if aggregate == "sum": + aggregate_init += event_output + else: + raise RuntimeError(f"Unknown aggregate type: {aggregate}") + + return aggregate_init diff --git a/lib/workload.py b/lib/workload.py deleted file mode 100644 index 3e4f1f8..0000000 --- a/lib/workload.py +++ /dev/null @@ -1,77 +0,0 @@ -#!/usr/bin/env python3 - -import logging -from . import utils - -logger = logging.getLogger(__name__) - - -class Workload: - def __init__(self, models): - self.models = models - - def _event_normalizer(self, event): - event_normalizer = lambda p: p - if "/" in event: - v1, v2 = event.split("/") - if utils.is_numeric(v1): - event = v2.strip() - event_normalizer = lambda p: utils.soft_cast_float(v1) / p - elif utils.is_numeric(v2): - event = v1.strip() - event_normalizer = lambda p: p / utils.soft_cast_float(v2) - else: - raise RuntimeError(f"Cannot parse '{event}'") - return event, event_normalizer - - def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False): - for event in events: - event, event_normalizer = self._event_normalizer(event) - nn, param = event.split("(") - name, action = nn.split(".") - param_model = None - ref_model = None - - for model in self.models: - if name in model.names and action in model.attributes(name): - ref_model = model - if use_lut: - param_model = model.get_param_lut(allow_none=True) - else: - param_model, param_info = model.get_fitted() - break - - if param_model is None: - raise RuntimeError(f"Did not find a model for {name}.{action}") - - param = param.removesuffix(")") - if param == "": - param = dict() - else: - param = utils.parse_conf_str(param) - - param_list = utils.param_dict_to_list(param, ref_model.parameters) - - if not use_lut and not param_info(name, action).is_predictable(param_list): - logging.warning( - f"Cannot predict {name}.{action}({param}), falling back to static model" - ) - - try: - event_output = event_normalizer( - param_model( - name, - action, - param=param_list, - ) - ) - except KeyError: - logging.error(f"Cannot predict {name}.{action}({param}) from LUT model") - raise - - if aggregate == "sum": - aggregate_init += event_output - else: - raise RuntimeError(f"Unknown aggregate type: {aggregate}") - - return aggregate_init -- cgit v1.2.3