#!/usr/bin/env python3 import getopt import plotter import re import sys from dfatool import EnergyModel, RawData, soft_cast_int opts = {} def print_model_quality(results): for state_or_tran in results.keys(): print() for key, result in results[state_or_tran].items(): if 'smape' in result: print('{:20s} {:15s} {:.2f}% / {:.0f}'.format( state_or_tran, key, result['smape'], result['mae'])) else: print('{:20s} {:15s} {:.0f}'.format( state_or_tran, key, result['mae'])) def model_quality_table(result_lists, info_list): for state_or_tran in result_lists[0].keys(): for key in result_lists[0][state_or_tran].keys(): buf = '{:20s} {:15s}'.format(state_or_tran, key) for i, results in enumerate(result_lists): info = info_list[i] buf += ' ||| ' if info == None or info(state_or_tran, key): result = results[state_or_tran][key] if 'smape' in result: buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae']) else: buf += '{:6} {:9.0f}'.format('', result['mae']) else: buf += '{:6}----{:9}'.format('', '') print(buf) def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq): print('') print(r'key attribute $1 - \frac{\sigma_X}{...}$') for state_or_tran in model.by_name.keys(): for attribute in model.by_name[state_or_tran]['attributes']: print('{} {} {:.8f}'.format(state_or_tran, attribute, model.generic_param_dependence_ratio(state_or_tran, attribute))) print('') print(r'key attribute parameter $1 - \frac{...}{...}$') for state_or_tran in model.by_name.keys(): for attribute in model.by_name[state_or_tran]['attributes']: for param in model.parameters(): print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.param_dependence_ratio(state_or_tran, attribute, param))) if state_or_tran in model._num_args: for arg_index in range(model._num_args[state_or_tran]): print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.arg_dependence_ratio(state_or_tran, attribute, arg_index))) if __name__ == '__main__': ignored_trace_indexes = None discard_outliers = None tex_output = False function_override = {} try: raw_opts, args = getopt.getopt(sys.argv[1:], "", 'plot ignored-trace-indexes= discard-outliers= function-override= tex-output'.split(' ')) for option, parameter in raw_opts: optname = re.sub(r'^--', '', option) opts[optname] = parameter if 'ignored-trace-indexes' in opts: ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(','))) if 0 in ignored_trace_indexes: print('[E] arguments to --ignored-trace-indexes start from 1') if 'discard-outliers' in opts: discard_outliers = float(opts['discard-outliers']) if 'function-override' in opts: for function_desc in opts['function-override'].split(';'): state_or_tran, attribute, *function_str = function_desc.split(' ') function_override[(state_or_tran, attribute)] = ' '.join(function_str) if 'tex-output' in opts: tex_output = True except getopt.GetoptError as err: print(err) sys.exit(2) raw_data = RawData(args) preprocessed_data = raw_data.get_preprocessed_data() model = EnergyModel(preprocessed_data, ignore_trace_indexes = ignored_trace_indexes, discard_outliers = discard_outliers, function_override = function_override) print('--- simple static model ---') static_model = model.get_static() #for state in model.states(): # print('{:10s}: {:.0f} µW ({:.2f})'.format( # state, # static_model(state, 'power'), # model.generic_param_dependence_ratio(state, 'power'))) # for param in model.parameters(): # print('{:10s} dependence on {:15s}: {:.2f}'.format( # '', # param, # model.param_dependence_ratio(state, 'power', param))) #for trans in model.transitions(): # print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format( # trans, static_model(trans, 'energy'), # static_model(trans, 'rel_energy_prev'), # static_model(trans, 'rel_energy_next'), # model.generic_param_dependence_ratio(trans, 'energy'), # model.generic_param_dependence_ratio(trans, 'rel_energy_prev'), # model.generic_param_dependence_ratio(trans, 'rel_energy_next'))) # print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration'))) static_quality = model.assess(static_model) print('--- LUT ---') lut_model = model.get_param_lut() lut_quality = model.assess(lut_model) print('--- param model ---') param_model, param_info = model.get_fitted() if not tex_output: for state in model.states(): for attribute in ['power']: if param_info(state, attribute): print('{:10s}: {}'.format(state, param_info(state, attribute)['function']._model_str)) print('{:10s} {}'.format('', param_info(state, attribute)['function']._regression_args)) for trans in model.transitions(): for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']: if param_info(trans, attribute): print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str)) print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args)) analytic_quality = model.assess(param_model) if tex_output: print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality) else: model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None]) sys.exit(0)