#!/usr/bin/env python3 """ Evaluate accuracy of online model for DFA/PTA traces. Usage: PYTHONPATH=lib bin/eval-online-model-accuracy.py [options] Options: --accounting=static_state|static_state_immediate|static_statetransition|static_statetransition_immedate Select accounting method --depth= (default: 3) Maximum number of function calls per run --sleep= (default: 0) How long to sleep between simulated function calls. --trace-filter=[ ...] Only consider traces whose beginning matches one of the provided transition sequences. E.g. --trace-filter='init,foo init,bar' will only consider traces with init as first and foo or bar as second transition, and --trace-filter='init,foo,$ init,bar,$' will only consider the traces init -> foo and init -> bar. """ import getopt import json import re import runner import sys import time import io import itertools import yaml from automata import PTA from codegen import * from harness import OnboardTimerHarness from dfatool import regression_measures opt = dict() if __name__ == '__main__': try: optspec = ( 'accounting= ' 'arch= ' 'app= ' 'depth= ' 'dummy= ' 'instance= ' 'repeat= ' 'run= ' 'sleep= ' 'timer-pin= ' 'trace-filter= ' 'timer-freq= ' 'timer-type= ' 'timestamp-type= ' 'energy-type= ' 'power-type= ' 'timestamp-granularity= ' 'energy-granularity= ' 'power-granularity= ' ) raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' ')) opt_default = { 'depth' : 3, 'sleep' : 0, 'timer-freq' : 1e6, 'timer-type' : 'uint16_t', 'timestamp-type' : 'uint16_t', 'energy-type' : 'uint32_t', 'power-type' : 'uint16_t', 'timestamp-granularity' : 1e-6, 'power-granularity' : 1e-6, 'energy-granularity' : 1e-12, } for option, parameter in raw_opts: optname = re.sub(r'^--', '', option) opt[optname] = parameter for key in 'depth sleep'.split(): if key in opt: opt[key] = int(opt[key]) else: opt[key] = opt_default[key] for key in 'timer-freq timestamp-granularity energy-granularity power-granularity'.split(): if key in opt: opt[key] = float(opt[key]) else: opt[key] = opt_default[key] for key in 'timer-type timestamp-type energy-type power-type'.split(): if key not in opt: opt[key] = opt_default[key] if 'trace-filter' in opt: trace_filter = [] for trace in opt['trace-filter'].split(): trace_filter.append(trace.split(',')) opt['trace-filter'] = trace_filter else: opt['trace-filter'] = None except getopt.GetoptError as err: print(err) sys.exit(2) modelfile = args[0] pta = PTA.from_file(modelfile) enum = dict() if '.json' not in modelfile: with open(modelfile, 'r') as f: driver_definition = yaml.safe_load(f) if 'dummygen' in driver_definition and 'enum' in driver_definition['dummygen']: enum = driver_definition['dummygen']['enum'] pta.set_random_energy_model() runs = list(pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'], sleep = opt['sleep'])) num_transitions = len(runs) if len(runs) == 0: print('DFS returned no traces -- perhaps your trace-filter is too restrictive?', file=sys.stderr) sys.exit(1) real_energies = list() real_durations = list() model_energies = list() for run in runs: accounting_method = get_simulated_accountingmethod(opt['accounting'])(pta, opt['timer-freq'], opt['timer-type'], opt['timestamp-type'], opt['power-type'], opt['energy-type']) real_energy, real_duration, _, _ = pta.simulate(run, accounting = accounting_method) model_energy = accounting_method.get_energy() real_energies.append(real_energy) real_durations.append(real_duration) model_energies.append(model_energy) measures = regression_measures(np.array(model_energies), np.array(real_energies)) print('SMAPE {:.0f}%, MAE {}'.format(measures['smape'], measures['mae'])) timer_freqs = [1e3, 2e3, 5e3, 1e4, 2e4, 5e4, 1e5, 2e5, 5e5, 1e6, 2e6, 5e6] timer_types = timestamp_types = power_types = energy_types = 'uint8_t uint16_t uint32_t uint64_t'.split() def config_weight(timer_freq, timer_type, ts_type, power_type, energy_type): base_weight = 0 for var_type in timer_type, ts_type, power_type, energy_type: if var_type == 'uint8_t': base_weight += 1 elif var_type == 'uint16_t': base_weight += 2 elif var_type == 'uint32_t': base_weight += 4 elif var_type == 'uint64_t': base_weight += 8 return base_weight #sys.exit(0) mean_errors = list() for timer_freq, timer_type, ts_type, power_type, energy_type in itertools.product(timer_freqs, timer_types, timestamp_types, power_types, energy_types): real_energies = list() real_durations = list() model_energies = list() # duration in µs # Bei kurzer Dauer (z.B. nur [1e2]) performt auc uint32_t für Energie gut, sonst nicht so (weil overflow) for sleep_duration in [1e2, 1e3, 1e4, 1e5, 1e6]: runs = pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'], sleep = sleep_duration) for run in runs: accounting_method = get_simulated_accountingmethod(opt['accounting'])(pta, timer_freq, timer_type, ts_type, power_type, energy_type) real_energy, real_duration, _, _ = pta.simulate(run, accounting = accounting_method) model_energy = accounting_method.get_energy() real_energies.append(real_energy) real_durations.append(real_duration) model_energies.append(model_energy) measures = regression_measures(np.array(model_energies), np.array(real_energies)) mean_errors.append(((timer_freq, timer_type, ts_type, power_type, energy_type), config_weight(timer_freq, timer_type, ts_type, power_type, energy_type), measures)) mean_errors.sort(key = lambda x: x[1]) mean_errors.sort(key = lambda x: x[2]['mae']) for result in mean_errors: config, weight, measures = result print('{} -> {:.0f}% / {}'.format( config, measures['smape'], measures['mae'])) sys.exit(0)