#!/usr/bin/env python3 """ Evaluate accuracy of online model for DFA/PTA traces. Usage: PYTHONPATH=lib bin/eval-online-model-accuracy.py [options] Options: --accounting=static_state|static_state_immediate|static_statetransition|static_statetransition_immedate Select accounting method --depth= (default: 3) Maximum number of function calls per run --sleep= (default: 0) How long to sleep between simulated function calls. --trace-filter=[ ...] Only consider traces whose beginning matches one of the provided transition sequences. E.g. --trace-filter='init,foo init,bar' will only consider traces with init as first and foo or bar as second transition, and --trace-filter='init,foo,$ init,bar,$' will only consider the traces init -> foo and init -> bar. """ import getopt import re import sys import itertools import yaml from dfatool.automata import PTA from dfatool.codegen import get_simulated_accountingmethod from dfatool.model import regression_measures import numpy as np opt = dict() if __name__ == "__main__": try: optspec = ( "accounting= " "arch= " "app= " "depth= " "dummy= " "instance= " "repeat= " "run= " "sleep= " "timer-pin= " "trace-filter= " "timer-freq= " "timer-type= " "timestamp-type= " "energy-type= " "power-type= " "timestamp-granularity= " "energy-granularity= " "power-granularity= " ) raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" ")) opt_default = { "depth": 3, "sleep": 0, "timer-freq": 1e6, "timer-type": "uint16_t", "timestamp-type": "uint16_t", "energy-type": "uint32_t", "power-type": "uint16_t", "timestamp-granularity": 1e-6, "power-granularity": 1e-6, "energy-granularity": 1e-12, } for option, parameter in raw_opts: optname = re.sub(r"^--", "", option) opt[optname] = parameter for key in "depth sleep".split(): if key in opt: opt[key] = int(opt[key]) else: opt[key] = opt_default[key] for ( key ) in "timer-freq timestamp-granularity energy-granularity power-granularity".split(): if key in opt: opt[key] = float(opt[key]) else: opt[key] = opt_default[key] for key in "timer-type timestamp-type energy-type power-type".split(): if key not in opt: opt[key] = opt_default[key] if "trace-filter" in opt: trace_filter = [] for trace in opt["trace-filter"].split(): trace_filter.append(trace.split(",")) opt["trace-filter"] = trace_filter else: opt["trace-filter"] = None except getopt.GetoptError as err: print(err) sys.exit(2) modelfile = args[0] pta = PTA.from_file(modelfile) enum = dict() if ".json" not in modelfile: with open(modelfile, "r") as f: driver_definition = yaml.safe_load(f) if "dummygen" in driver_definition and "enum" in driver_definition["dummygen"]: enum = driver_definition["dummygen"]["enum"] pta.set_random_energy_model() runs = list( pta.dfs( opt["depth"], with_arguments=True, with_parameters=True, trace_filter=opt["trace-filter"], sleep=opt["sleep"], ) ) num_transitions = len(runs) if len(runs) == 0: print( "DFS returned no traces -- perhaps your trace-filter is too restrictive?", file=sys.stderr, ) sys.exit(1) real_energies = list() real_durations = list() model_energies = list() for run in runs: accounting_method = get_simulated_accountingmethod(opt["accounting"])( pta, opt["timer-freq"], opt["timer-type"], opt["timestamp-type"], opt["power-type"], opt["energy-type"], ) real_energy, real_duration, _, _ = pta.simulate( run, accounting=accounting_method ) model_energy = accounting_method.get_energy() real_energies.append(real_energy) real_durations.append(real_duration) model_energies.append(model_energy) measures = regression_measures(np.array(model_energies), np.array(real_energies)) print("SMAPE {:.0f}%, MAE {}".format(measures["smape"], measures["mae"])) timer_freqs = [1e3, 2e3, 5e3, 1e4, 2e4, 5e4, 1e5, 2e5, 5e5, 1e6, 2e6, 5e6] timer_types = ( timestamp_types ) = power_types = energy_types = "uint8_t uint16_t uint32_t uint64_t".split() def config_weight(timer_freq, timer_type, ts_type, power_type, energy_type): base_weight = 0 for var_type in timer_type, ts_type, power_type, energy_type: if var_type == "uint8_t": base_weight += 1 elif var_type == "uint16_t": base_weight += 2 elif var_type == "uint32_t": base_weight += 4 elif var_type == "uint64_t": base_weight += 8 return base_weight # sys.exit(0) mean_errors = list() for timer_freq, timer_type, ts_type, power_type, energy_type in itertools.product( timer_freqs, timer_types, timestamp_types, power_types, energy_types ): real_energies = list() real_durations = list() model_energies = list() # duration in µs # Bei kurzer Dauer (z.B. nur [1e2]) performt auch uint32_t für Energie gut, sonst nicht so (weil overflow) for sleep_duration in [1e2, 1e3, 1e4, 1e5, 1e6]: runs = pta.dfs( opt["depth"], with_arguments=True, with_parameters=True, trace_filter=opt["trace-filter"], sleep=sleep_duration, ) for run in runs: accounting_method = get_simulated_accountingmethod(opt["accounting"])( pta, timer_freq, timer_type, ts_type, power_type, energy_type ) real_energy, real_duration, _, _ = pta.simulate( run, accounting=accounting_method ) model_energy = accounting_method.get_energy() real_energies.append(real_energy) real_durations.append(real_duration) model_energies.append(model_energy) measures = regression_measures( np.array(model_energies), np.array(real_energies) ) mean_errors.append( ( (timer_freq, timer_type, ts_type, power_type, energy_type), config_weight(timer_freq, timer_type, ts_type, power_type, energy_type), measures, ) ) mean_errors.sort(key=lambda x: x[1]) mean_errors.sort(key=lambda x: x[2]["mae"]) for result in mean_errors: config, weight, measures = result print("{} -> {:.0f}% / {}".format(config, measures["smape"], measures["mae"])) sys.exit(0)