#!/usr/bin/env python3 import getopt import re import sys from dfatool.dfatool import PTAModel, RawData, pta_trace_to_aggregate opt = dict() def model_quality_table(result_lists, info_list): for state_or_tran in result_lists[0]["by_name"].keys(): for key in result_lists[0]["by_name"][state_or_tran].keys(): buf = "{:20s} {:15s}".format(state_or_tran, key) for i, results in enumerate(result_lists): results = results["by_name"] info = info_list[i] buf += " ||| " if info == None or info(state_or_tran, key): result = results[state_or_tran][key] if "smape" in result: buf += "{:6.2f}% / {:9.0f}".format( result["smape"], result["mae"] ) else: buf += "{:6} {:9.0f}".format("", result["mae"]) else: buf += "{:6}----{:9}".format("", "") print(buf) def combo_model_quality_table(result_lists, info_list): for state_or_tran in result_lists[0][0]["by_name"].keys(): for key in result_lists[0][0]["by_name"][state_or_tran].keys(): for sub_result_lists in result_lists: buf = "{:20s} {:15s}".format(state_or_tran, key) for i, results in enumerate(sub_result_lists): results = results["by_name"] info = info_list[i] buf += " ||| " if info == None or info(state_or_tran, key): result = results[state_or_tran][key] if "smape" in result: buf += "{:6.2f}% / {:9.0f}".format( result["smape"], result["mae"] ) else: buf += "{:6} {:9.0f}".format("", result["mae"]) else: buf += "{:6}----{:9}".format("", "") print(buf) if __name__ == "__main__": ignored_trace_indexes = [] discard_outliers = None try: raw_opts, args = getopt.getopt( sys.argv[1:], "", "plot ignored-trace-indexes= discard-outliers=".split(" ") ) for option, parameter in raw_opts: optname = re.sub(r"^--", "", option) opt[optname] = parameter if "ignored-trace-indexes" in opt: ignored_trace_indexes = list( map(int, opt["ignored-trace-indexes"].split(",")) ) if 0 in ignored_trace_indexes: print("[E] arguments to --ignored-trace-indexes start from 1") if "discard-outliers" in opt: discard_outliers = float(opt["discard-outliers"]) except getopt.GetoptError as err: print(err) sys.exit(2) raw_data = RawData(args) preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate( preprocessed_data, ignored_trace_indexes ) m1 = PTAModel( by_name, parameters, arg_count, traces=preprocessed_data, ignore_trace_indexes=ignored_trace_indexes, ) m2 = PTAModel( by_name, parameters, arg_count, traces=preprocessed_data, ignore_trace_indexes=ignored_trace_indexes, discard_outliers=discard_outliers, ) print("--- simple static model ---") static_m1 = m1.get_static() static_m2 = m2.get_static() # for state in model.states(): # print('{:10s}: {:.0f} µW ({:.2f})'.format( # state, # static_model(state, 'power'), # model.generic_param_dependence_ratio(state, 'power'))) # for param in model.parameters(): # print('{:10s} dependence on {:15s}: {:.2f}'.format( # '', # param, # model.param_dependence_ratio(state, 'power', param))) # for trans in model.transitions(): # print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format( # trans, static_model(trans, 'energy'), # static_model(trans, 'rel_energy_prev'), # static_model(trans, 'rel_energy_next'), # model.generic_param_dependence_ratio(trans, 'energy'), # model.generic_param_dependence_ratio(trans, 'rel_energy_prev'), # model.generic_param_dependence_ratio(trans, 'rel_energy_next'))) # print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration'))) static_q1 = m1.assess(static_m1) static_q2 = m2.assess(static_m2) static_q12 = m1.assess(static_m2) print("--- LUT ---") lut_m1 = m1.get_param_lut() lut_m2 = m2.get_param_lut() lut_q1 = m1.assess(lut_m1) lut_q2 = m2.assess(lut_m2) lut_q12 = m1.assess(lut_m2) print("--- param model ---") param_m1, param_i1 = m1.get_fitted() for state in m1.states(): for attribute in ["power"]: if param_i1(state, attribute): print( "{:10s}: {}".format( state, param_i1(state, attribute)["function"]._model_str ) ) print( "{:10s} {}".format( "", param_i1(state, attribute)["function"]._regression_args ) ) for trans in m1.transitions(): for attribute in [ "energy", "rel_energy_prev", "rel_energy_next", "duration", "timeout", ]: if param_i1(trans, attribute): print( "{:10s}: {:10s}: {}".format( trans, attribute, param_i1(trans, attribute)["function"]._model_str, ) ) print( "{:10s} {:10s} {}".format( "", "", param_i1(trans, attribute)["function"]._regression_args ) ) param_m2, param_i2 = m2.get_fitted() for state in m2.states(): for attribute in ["power"]: if param_i2(state, attribute): print( "{:10s}: {}".format( state, param_i2(state, attribute)["function"]._model_str ) ) print( "{:10s} {}".format( "", param_i2(state, attribute)["function"]._regression_args ) ) for trans in m2.transitions(): for attribute in [ "energy", "rel_energy_prev", "rel_energy_next", "duration", "timeout", ]: if param_i2(trans, attribute): print( "{:10s}: {:10s}: {}".format( trans, attribute, param_i2(trans, attribute)["function"]._model_str, ) ) print( "{:10s} {:10s} {}".format( "", "", param_i2(trans, attribute)["function"]._regression_args ) ) analytic_q1 = m1.assess(param_m1) analytic_q2 = m2.assess(param_m2) analytic_q12 = m1.assess(param_m2) model_quality_table([static_q1, analytic_q1, lut_q1], [None, param_i1, None]) model_quality_table([static_q2, analytic_q2, lut_q2], [None, param_i2, None]) model_quality_table([static_q12, analytic_q12, lut_q12], [None, param_i2, None]) combo_model_quality_table( [ [static_q1, analytic_q1, lut_q1], [static_q2, analytic_q2, lut_q2], [static_q12, analytic_q12, lut_q12], ], [None, param_i1, None], ) sys.exit(0)