#!/usr/bin/env python3 """ Generate a driver/library benchmark based on DFA/PTA traces. Usage: PYTHONPATH=lib bin/generate-dfa-benchmark.py [options] [output.cc] generate-dfa-benchmarks reads in a DFA definition and generates runs (i.e., all words accepted by the DFA up to a configurable length). Each symbol corresponds to a function call. If arguments are specified in the DFA definition, each symbol corresponds to a function call with a specific set of arguments (so all argument combinations are present in the generated runs). Options: --accounting=static_state|static_state_immediate|static_statetransition|static_statetransition_immedate Select accounting method for dummy driver generation --dummy= Generate and use a dummy driver for online energy model overhead evaluation --depth= (default: 3) Maximum number of function calls per run --repeat= (default: 0) Repeat benchmark runs times. When 0, benchmark runs are repeated indefinitely and must be explicitly terminated with Ctrl+C / SIGINT --instance= Override the name of the class instance used for benchmarking --mimosa=[k=v,k=v,...] Perform energy measurements with MIMOSA. Takes precedence over --timing and --energytrace. mimosa options are key-value pairs. Possible settings with defaults: offset = 130 (mysterious 0V offset) shunt = 330 (measurement shunt in ohms) voltage = 3.3 (VCC provided to DUT) --sleep= (default: 0) How long to sleep between function calls. --shrink Decrease amount of parameter values used in state space exploration (only use minimum and maximum for numeric values) --timing Perform timing measurements using on-chip counters (no external hardware required) --energytrace Perform energy measurements using MSP430 EnergyTrace hardware. Includes --timing. --trace-filter=[ ...] Only consider traces whose beginning matches one of the provided transition sequences. E.g. --trace-filter='init,foo init,bar' will only consider traces with init as first and foo or bar as second transition, and --trace-filter='init,foo,$ init,bar,$' will only consider the traces init -> foo and init -> bar. """ import getopt import json import os import re import runner import sys import tarfile import time import io import yaml from aspectc import Repo from automata import PTA from codegen import * from harness import OnboardTimerHarness, TransitionHarness from utils import flatten opt = dict() def benchmark_from_runs(pta: PTA, runs: list, harness: OnboardTimerHarness, benchmark_id: int = 0, dummy = False, repeat = 0) -> io.StringIO: outbuf = io.StringIO() outbuf.write('#include "arch.h"\n') if dummy: outbuf.write('#include "driver/dummy.h"\n') elif 'includes' in pta.codegen: for include in pta.codegen['includes']: outbuf.write('#include "{}"\n'.format(include)) outbuf.write(harness.global_code()) outbuf.write('int main(void)\n') outbuf.write('{\n') for driver in ('arch', 'gpio', 'kout'): outbuf.write('{}.setup();\n'.format(driver)) # There is a race condition between flashing the code and starting the UART log. # When starting the log before flashing, output from a previous benchmark may cause bogus data to be added. # When flashing first and then starting the log, the first log lines may be lost. # To work around this, we flash first, then start the log, and use this delay statement to ensure that no output is lost. # This is also useful to faciliate MIMOSA calibration after flashing # For MIMOSA, the DUT is disconnected from power during calibration, so # it must be set up after the calibration delay. # For energytrace, the device is connected to VCC and set up before # the initialization delay to -- this puts it into a well-defined state and # decreases pre-sync power consumption if 'energytrace' not in opt: outbuf.write('arch.delay_ms(12000);\n') # Output some newlines to ensure the parser can determine the start of the first real output line outbuf.write('kout << endl << endl;\n') if 'setup' in pta.codegen: for call in pta.codegen['setup']: outbuf.write(call) if 'energytrace' in opt: outbuf.write('for (unsigned char i = 0; i < 10; i++) {\n') outbuf.write('arch.sleep_ms(250);\n}\n') # Output some newlines to ensure the parser can determine the start of the first real output line outbuf.write('kout << endl << endl;\n') if repeat: outbuf.write('unsigned char i = 0;\n') outbuf.write('while (i++ < {}) {{\n'.format(repeat)) else: outbuf.write('while (1) {\n') outbuf.write(harness.start_benchmark()) class_prefix = '' if 'instance' in opt: class_prefix = '{}.'.format(opt['instance']) elif 'instance' in pta.codegen: class_prefix = '{}.'.format(pta.codegen['instance']) num_transitions = 0 num_traces = 0 for run in runs: outbuf.write(harness.start_run()) harness.start_trace() param = pta.get_initial_param_dict() for transition, arguments, parameter in run: num_transitions += 1 harness.append_transition(transition.name, param, arguments) harness.append_state(transition.destination.name, parameter.copy()) outbuf.write('// {} -> {}\n'.format(transition.origin.name, transition.destination.name)) if transition.is_interrupt: outbuf.write('// wait for {} interrupt\n'.format(transition.name)) transition_code = '// TODO add startTransition / stopTransition calls to interrupt routine' else: transition_code = '{}{}({});'.format(class_prefix, transition.name, ', '.join(map(str, arguments))) outbuf.write(harness.pass_transition(pta.get_transition_id(transition), transition_code, transition = transition)) param = parameter outbuf.write('// current parameters: {}\n'.format(', '.join(map(lambda kv: '{}={}'.format(*kv), param.items())))) if opt['sleep']: if 'energytrace' in opt: outbuf.write('arch.sleep_ms({:d}); // {}\n'.format(opt['sleep'], transition.destination.name)) else: outbuf.write('arch.delay_ms({:d}); // {}\n'.format(opt['sleep'], transition.destination.name)) outbuf.write(harness.stop_run(num_traces)) if dummy: outbuf.write('kout << "[Energy] " << {}getEnergy() << endl;\n'.format(class_prefix)) outbuf.write('\n') num_traces += 1 outbuf.write(harness.stop_benchmark()) outbuf.write('}\n') # Ensure logging can be terminated after the specified number of measurements outbuf.write(harness.start_benchmark()) outbuf.write('while(1) { }\n') outbuf.write('return 0;\n') outbuf.write('}\n') return outbuf def run_benchmark(application_file: str, pta: PTA, runs: list, arch: str, app: str, run_args: list, harness: object, sleep: int = 0, repeat: int = 0, run_offset: int = 0, runs_total: int = 0, dummy = False): if 'mimosa' in opt or 'energytrace' in opt: outbuf = benchmark_from_runs(pta, runs, harness, dummy = dummy, repeat = 1) else: outbuf = benchmark_from_runs(pta, runs, harness, dummy = dummy, repeat = repeat) with open(application_file, 'w') as f: f.write(outbuf.getvalue()) print('[MAKE] building benchmark with {:d} runs'.format(len(runs))) # assume an average of 10ms per transition. Mind the 10s start delay. run_timeout = 10 + num_transitions * (sleep+10) / 1000 if repeat: run_timeout *= repeat needs_split = False if len(runs) > 1000: needs_split = True else: try: runner.build(arch, app, run_args) except RuntimeError: if len(runs) > 50: # Application is too large -> split up runs needs_split = True else: # Unknown error raise # This has been deliberately taken out of the except clause to avoid nested exception handlers # (they lead to pretty interesting tracebacks which are probably more confusing than helpful) if needs_split: print('[MAKE] benchmark code is too large, splitting up') mid = len(runs) // 2 # Previously prepared trace data is useless harness.reset() results = run_benchmark(application_file, pta, runs[:mid], arch, app, run_args, harness.copy(), sleep, repeat, run_offset = run_offset, runs_total = runs_total, dummy = dummy) results.extend(run_benchmark(application_file, pta, runs[mid:], arch, app, run_args, harness.copy(), sleep, repeat, run_offset = run_offset + mid, runs_total = runs_total, dummy = dummy)) return results if 'mimosa' in opt or 'energytrace' in opt: files = list() i = 0 while i < opt['repeat']: runner.flash(arch, app, run_args) if 'mimosa' in opt: monitor = runner.get_monitor(arch, callback = harness.parser_cb, mimosa = opt['mimosa']) elif 'energytrace' in opt: monitor = runner.get_monitor(arch, callback = harness.parser_cb, energytrace = opt['energytrace']) sync_error = False try: slept = 0 while not harness.done: # possible race condition: if the benchmark completes at this # exact point, it sets harness.done and unsets harness.synced. # vvv if slept > 30 and slept < 40 and not harness.synced and not harness.done: print('[RUN] has been unsynced for more than 30 seconds, assuming error. Retrying.') sync_error = True break if harness.abort: print('[RUN] harness encountered an error. Retrying') sync_error = True break time.sleep(5) slept += 5 print('[RUN] {:d}/{:d} ({:.0f}%), current benchmark at {:.0f}%'.format(run_offset, runs_total, run_offset * 100 / runs_total, slept * 100 / run_timeout)) except KeyboardInterrupt: pass monitor.close() if sync_error: for filename in monitor.get_files(): os.remove(filename) harness.undo(i) else: files.extend(monitor.get_files()) i += 1 harness.restart() return [(runs, harness, monitor, files)] else: runner.flash(arch, app, run_args) monitor = runner.get_monitor(arch, callback = harness.parser_cb) if arch == 'posix': print('[RUN] Will run benchmark for {:.0f} seconds'.format(run_timeout)) lines = monitor.run(int(run_timeout)) return [(runs, harness, lines, list())] try: slept = 0 while not harness.done: time.sleep(5) slept += 5 print('[RUN] {:d}/{:d} ({:.0f}%), current benchmark at {:.0f}%'.format(run_offset, runs_total, run_offset * 100 / runs_total, slept * 100 / run_timeout)) except KeyboardInterrupt: pass monitor.close() return [(runs, harness, monitor, list())] if __name__ == '__main__': try: optspec = ( 'accounting= ' 'arch= ' 'app= ' 'depth= ' 'dummy= ' 'energytrace= ' 'instance= ' 'mimosa= ' 'repeat= ' 'run= ' 'sleep= ' 'shrink ' 'timing ' 'timer-pin= ' 'trace-filter= ' ) raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' ')) for option, parameter in raw_opts: optname = re.sub(r'^--', '', option) opt[optname] = parameter if 'depth' in opt: opt['depth'] = int(opt['depth']) else: opt['depth'] = 3 if 'repeat' in opt: opt['repeat'] = int(opt['repeat']) else: opt['repeat'] = 0 if 'sleep' in opt: opt['sleep'] = int(opt['sleep']) else: opt['sleep'] = 0 if 'trace-filter' in opt: trace_filter = list() for trace in opt['trace-filter'].split(): trace_filter.append(trace.split(',')) opt['trace-filter'] = trace_filter else: opt['trace-filter'] = None if 'mimosa' in opt: if opt['mimosa'] == '': opt['mimosa'] = dict() else: opt['mimosa'] = dict(map(lambda x: x.split('='), opt['mimosa'].split(','))) opt.pop('timing', None) if opt['repeat'] == 0: opt['repeat'] = 1 if 'energytrace' in opt: if opt['energytrace'] == '': opt['energytrace'] = dict() else: opt['energytrace'] = dict(map(lambda x: x.split('='), opt['energytrace'].split(','))) opt.pop('timing', None) if opt['repeat'] == 0: opt['repeat'] = 1 except getopt.GetoptError as err: print(err) sys.exit(2) modelfile = args[0] pta = PTA.from_file(modelfile) run_flags = None if 'shrink' in opt: pta.shrink_argument_values() if 'timer-pin' in opt: timer_pin = opt['timer-pin'] else: timer_pin = None if 'dummy' in opt: enum = dict() if '.json' not in modelfile: with open(modelfile, 'r') as f: driver_definition = yaml.safe_load(f) if 'dummygen' in driver_definition and 'enum' in driver_definition['dummygen']: enum = driver_definition['dummygen']['enum'] repo = Repo('/home/derf/var/projects/multipass/build/repo.acp') pta.set_random_energy_model() if 'accounting' in opt: accounting_object = get_accountingmethod(opt['accounting'])(opt['dummy'], pta) else: accounting_object = None drv = MultipassDriver(opt['dummy'], pta, repo.class_by_name[opt['dummy']], enum=enum, accounting=accounting_object) with open('/home/derf/var/projects/multipass/src/driver/dummy.cc', 'w') as f: f.write(drv.impl) with open('/home/derf/var/projects/multipass/include/driver/dummy.h', 'w') as f: f.write(drv.header) if '.json' not in modelfile: with open(modelfile, 'r') as f: driver_definition = yaml.safe_load(f) if 'codegen' in driver_definition and 'flags' in driver_definition['codegen']: run_flags = driver_definition['codegen']['flags'] if run_flags is None: run_flags = opt['run'].split() runs = list(pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'])) num_transitions = len(runs) if len(runs) == 0: print('DFS returned no traces -- perhaps your trace-filter is too restrictive?', file=sys.stderr) sys.exit(1) need_return_values = False if next(filter(lambda x: len(x.return_value_handlers), pta.transitions), None): need_return_values = True if 'mimosa' in opt: harness = TransitionHarness(gpio_pin = timer_pin, pta = pta, log_return_values = need_return_values, repeat = 1, post_transition_delay_us = 20) elif 'energytrace' in opt: harness = OnboardTimerHarness(gpio_pin = timer_pin, gpio_mode = 'bar', pta = pta, counter_limits = runner.get_counter_limits_us(opt['arch']), log_return_values = need_return_values, repeat = 1) elif 'timing' in opt: harness = OnboardTimerHarness(gpio_pin = timer_pin, pta = pta, counter_limits = runner.get_counter_limits_us(opt['arch']), log_return_values = need_return_values, repeat = opt['repeat']) if len(args) > 1: results = run_benchmark(args[1], pta, runs, opt['arch'], opt['app'], run_flags, harness, opt['sleep'], opt['repeat'], runs_total = len(runs), dummy = 'dummy' in opt) json_out = { 'opt' : opt, 'pta' : pta.to_json(), 'traces' : list(map(lambda x: x[1].traces, results)), 'raw_output' : list(map(lambda x: x[2].get_lines(), results)), 'files' : list(map(lambda x: x[3], results)), 'configs' : list(map(lambda x: x[2].get_config(), results)), } extra_files = flatten(json_out['files']) if 'instance' in pta.codegen: output_prefix = time.strftime('/home/derf/var/ess/aemr/data/%Y%m%d-%H%M%S-') + pta.codegen['instance'] else: output_prefix = time.strftime('/home/derf/var/ess/aemr/data/%Y%m%d-%H%M%S-ptalog') if len(extra_files): with open('ptalog.json', 'w') as f: json.dump(json_out, f) with tarfile.open('{}.tar'.format(output_prefix), 'w') as tar: tar.add('ptalog.json') for extra_file in extra_files: tar.add(extra_file) print(' --> {}.tar'.format(output_prefix)) os.remove('ptalog.json') for extra_file in extra_files: os.remove(extra_file) else: with open('{}.json'.format(output_prefix), 'w') as f: json.dump(json_out, f) print(' --> {}.json'.format(output_prefix)) else: outbuf = benchmark_from_runs(pta, runs, harness, repeat = opt['repeat']) print(outbuf.getvalue()) sys.exit(0)