#!/usr/bin/env python3 import csv import numpy as np import os import struct import sys import tarfile import matplotlib.pyplot as plt from dfatool import running_mean, MIMOSA, KeysightCSV voltage = float(sys.argv[1]) shunt = float(sys.argv[2]) mimfile = "../data/20161114_arb_%d.mim" % shunt csvfile = "../data/20161114_%d_arb.csv" % shunt mim = MIMOSA(voltage, shunt) ks = KeysightCSV() charges, triggers = mim.load_data(mimfile) timestamps, currents = ks.load_data(csvfile) def calfunc330(charge): if charge < 140.210488888889: return 0 if charge <= 526.507377777778: return float(charge) * 0.0941215500652876 + -13.196828549634 else: return float(charge) * 0.0897304193584184 + -47.2437278033012 + 36.358862 def calfunc82(charge): if charge < 126.993600: return 0 if charge <= 245.464889: return charge * 0.306900 + -38.974361 else: return charge * 0.356383 + -87.479495 + 36.358862 def calfunc33(charge): if charge < 127.000000: return 0 if charge <= 127.211911: return charge * 171.576006 + -21790.152700 else: return charge * 0.884357 + -112.500777 + 36.358862 calfuncs = { 33 : calfunc33, 82 : calfunc82, 330 : calfunc330, } vcalfunc = np.vectorize(calfuncs[int(shunt)], otypes=[np.float64]) #plt.plot(np.arange(0, 1000, 0.01), vcalfunc(np.arange(0, 1000, 0.01))) #plt.xlabel('Rohdatenwert') #plt.ylabel('Strom [µA]') #plt.show() #sys.exit(0) mim_x = np.arange(len(charges)-199) * 1e-5 mim_y = running_mean(mim.charge_to_current_nocal(charges), 200) * 1e-6 cal_y = running_mean(vcalfunc(charges), 200) * 1e-6 ks_x = timestamps[:len(timestamps)-9] ks_y = running_mean(currents, 10) # look for synchronization opportunity in first 5 seconds mim_sync_idx = 0 ks_sync_idx = 0 for i in range(0, 500000): if mim_sync_idx == 0 and mim_y[i] > 0.001: mim_sync_idx = i if ks_sync_idx == 0 and ks_y[i] > 0.001: ks_sync_idx = i mim_x = mim_x - mim_x[mim_sync_idx] ks_x = ks_x - ks_x[ks_sync_idx] mim_max_start = int(len(mim_y) * 0.4) mim_max_end = int(len(mim_y) * 0.6) mim_start_end = int(len(mim_y) * 0.1) mim_end_start = int(len(mim_y) * 0.9) mim_max = np.max(mim_y[mim_max_start:mim_max_end]) mim_min1 = np.min(mim_y[:mim_start_end]) mim_min2 = np.min(mim_y[mim_end_start:]) mim_center = 0 mim_start = 0 mim_end = 0 for i, y in enumerate(mim_y): if y == mim_max and i / len(mim_y) > 0.4 and i / len(mim_y) < 0.6: mim_center = i elif y == mim_min1 and i / len(mim_y) < 0.1: mim_start = i elif y == mim_min2 and i / len(mim_y) > 0.9: mim_end = i plt.plot([mim_x[mim_center]], [mim_y[mim_center]], "yo") plt.plot([mim_x[mim_start]], [mim_y[mim_start]], "yo") plt.plot([mim_x[mim_end]], [mim_y[mim_end]], "yo") # mimhandle, = plt.plot(mim_x, mim_y, "r-", label='MIMOSA') #calhandle, = plt.plot(mim_x, cal_y, "g-", label='MIMOSA (autocal)') kshandle, = plt.plot(ks_x, ks_y, "b-", label='Keysight') #plt.legend(handles=[mimhandle, calhandle, kshandle]) plt.xlabel('Zeit [s]') plt.ylabel('Strom [A]') plt.grid(True) ks_steps_up = [] ks_steps_down = [] mim_steps_up = [] mim_steps_down = [] skip = 0 for i, gradient in enumerate(np.gradient(ks_y, 10000)): if gradient > 0.5e-9 and i - skip > 200 and ks_x[i] < mim_x[mim_center] and ks_x[i] > 5: plt.plot([ks_x[i]], [ks_y[i]], "go") ks_steps_up.append(i) skip = i elif gradient < -0.5e-9 and i - skip > 200 and ks_x[i] > mim_x[mim_center] and ks_x[i] < mim_x[mim_end]: plt.plot([ks_x[i]], [ks_y[i]], "g*") ks_steps_down.append(i) skip = i j = 0 for i, ts in enumerate(mim_x): if j < len(ks_steps_up) and ts > ks_x[ks_steps_up[j]]: mim_steps_up.append(i) j += 1 j = 0 for i, ts in enumerate(mim_x): if j < len(ks_steps_down) and ts > ks_x[ks_steps_down[j]]: mim_steps_down.append(i) j += 1 print(ks_steps_up) print(mim_steps_up) mim_values = [] cal_values = [] ks_values = [] for i in range(1, len(ks_steps_up)): mim_values.append(np.mean(mim_y[mim_steps_up[i-1]:mim_steps_up[i]])) cal_values.append(np.mean(cal_y[mim_steps_up[i-1]:mim_steps_up[i]])) ks_values.append(np.mean(ks_y[ks_steps_up[i-1]:ks_steps_up[i]])) print("step %d avg %5.3f vs %5.3f vs %5.3f mA" % (i, np.mean(ks_y[ks_steps_up[i-1]:ks_steps_up[i]]) * 1e3, np.mean(mim_y[mim_steps_up[i-1]:mim_steps_up[i]]) * 1e3, np.mean(cal_y[mim_steps_up[i-1]:mim_steps_up[i]]) * 1e3)) for i in range(1, len(ks_steps_down)): mim_values.append(np.mean(mim_y[mim_steps_down[i-1]:mim_steps_down[i]])) cal_values.append(np.mean(cal_y[mim_steps_down[i-1]:mim_steps_down[i]])) ks_values.append(np.mean(ks_y[ks_steps_down[i-1]:ks_steps_down[i]])) print("step %d avg %5.3f vs %5.3f vs %5.3f mA" % (i, np.mean(ks_y[ks_steps_down[i-1]:ks_steps_down[i]]) * 1e3, np.mean(mim_y[mim_steps_down[i-1]:mim_steps_down[i]]) * 1e3, np.mean(cal_y[mim_steps_down[i-1]:mim_steps_down[i]]) * 1e3)) mim_values = np.array(mim_values) cal_values = np.array(cal_values) ks_values = np.array(ks_values) plt.show() plt.hist(ks_y[ks_steps_up[48]:ks_steps_up[49]] * 1e3, 100, normed=0, facecolor='blue', alpha=0.8) plt.xlabel('mA Keysight') plt.ylabel('#') plt.grid(True) plt.show() plt.hist(mim_y[mim_steps_up[48]:mim_steps_up[49]] * 1e3, 100, normed=0, facecolor='blue', alpha=0.8) plt.xlabel('mA MimosaGUI') plt.ylabel('#') plt.grid(True) plt.show() mimhandle, = plt.plot(ks_values * 1e3, mim_values * 1e3, "ro", label='Unkalibriert', markersize=4) calhandle, = plt.plot(ks_values * 1e3, cal_values * 1e3, "bs", label='Kalibriert', markersize=4) plt.legend(handles=[mimhandle, calhandle]) plt.xlabel('mA Keysight') plt.ylabel('mA MIMOSA') plt.grid(True) plt.show() mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) * 1e3, "ro", label='Unkalibriert', markersize=4) calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) * 1e3, "bs", label='Kalibriert', markersize=4) plt.legend(handles=[mimhandle, calhandle]) plt.xlabel('Sollstrom [mA]') plt.ylabel('Messfehler MIMOSA [mA]') plt.grid(True) plt.show() mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) * 1e3, "r--", label='Unkalibriert') calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) * 1e3, "b-", label='Kalibriert') plt.legend(handles=[mimhandle, calhandle]) plt.xlabel('Sollstrom [mA]') plt.ylabel('Messfehler MIMOSA [mA]') plt.grid(True) plt.show() mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) / ks_values * 100, "ro", label='Unkalibriert', markersize=4) calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) / ks_values * 100, "bs", label='Kalibriert', markersize=4) plt.legend(handles=[mimhandle, calhandle]) plt.xlabel('Sollstrom [mA]') plt.ylabel('Messfehler MIMOSA [%]') plt.grid(True) plt.show() mimhandle, = plt.plot(ks_values * 1e3, (mim_values - ks_values) / ks_values * 100, "r--", label='Unkalibriert') calhandle, = plt.plot(ks_values * 1e3, (cal_values - ks_values) / ks_values * 100, "b-", label='Kalibriert') plt.legend(handles=[mimhandle, calhandle]) plt.xlabel('Sollstrom [mA]') plt.ylabel('Messfehler MIMOSA [%]') plt.grid(True) plt.show() #mimhandle, = plt.plot(mim_x, np.gradient(mim_y, 10000), "r-", label='MIMOSA') #kshandle, = plt.plot(ks_x, np.gradient(ks_y, 10000), "b-", label='Keysight') #plt.legend(handles=[mimhandle, kshandle]) #plt.xlabel('Zeit [s]') #plt.ylabel('Strom [A]') #plt.show()