#!/usr/bin/env python3 # vim:tabstop=4:softtabstop=4:shiftwidth=4:textwidth=160:smarttab:expandtab import getopt import itertools import matplotlib.pyplot as plt import numpy as np import os import re import sys from dfatool.dfatool import aggregate_measures, MIMOSA from dfatool.utils import running_mean opt = dict() def show_help(): print('''mimosa-etv - MIMOSA Analyzer and Visualizer USAGE mimosa-etv [--skip ] [--threshold ] [--plot] [--stat] DESCRIPTION mimosa-etv analyzes measurements taken via MIMOSA. Data can be plotted or aggregated on stdout. OPTIONS --skip Skip the first data samples. --threshold |mean Partition data into points with mean power >= and points with mean power < , and print some statistics. higher power is handled as peaks, whereas low-power measurements constitute the baseline. If the threshold is set to "mean", the mean power of all measurements will be used --threshold-peakcount Automatically determine threshold so that there are exactly peaks. A peaks is a group of consecutive measurements with mean power >= threshold --plot Show power/time plot --stat Show mean voltage, current, and power as well as total energy consumption. ''') def peak_search(data, lower, upper, direction_function): while upper - lower > 1e-6: bs_test = np.mean([lower, upper]) peakcount = itertools.groupby(data, lambda x: x >= bs_test) peakcount = filter(lambda x: x[0] == True, peakcount) peakcount = sum(1 for i in peakcount) direction = direction_function(peakcount, bs_test) if direction == 0: return bs_test elif direction == 1: lower = bs_test else: upper = bs_test return None def peak_search2(data, lower, upper, check_function): for power in np.arange(lower, upper, 1e-6): peakcount = itertools.groupby(data, lambda x: x >= power) peakcount = filter(lambda x: x[0] == True, peakcount) peakcount = sum(1 for i in peakcount) if check_function(peakcount, power) == 0: return power return None if __name__ == '__main__': try: optspec = ('help skip= threshold= threshold-peakcount= plot stat') raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' ')) for option, parameter in raw_opts: optname = re.sub(r'^--', '', option) opt[optname] = parameter if 'help' in opt: show_help() sys.exit(0) if 'skip' in opt: opt['skip'] = int(opt['skip']) else: opt['skip'] = 0 if 'threshold' in opt and opt['threshold'] != 'mean': opt['threshold'] = float(opt['threshold']) if 'threshold-peakcount' in opt: opt['threshold-peakcount'] = int(opt['threshold-peakcount']) except getopt.GetoptError as err: print(err) sys.exit(2) except IndexError: print('Usage: mimosa-etv ') sys.exit(2) except ValueError: print('Error: duration or skip is not a number') sys.exit(2) voltage, shunt, inputfile = args voltage = float(voltage) shunt = int(shunt) mim = MIMOSA(voltage, shunt) charges, triggers = mim.load_file(inputfile) currents = mim.charge_to_current_nocal(charges) * 1e-6 powers = currents * voltage if 'threshold-peakcount' in opt: bs_mean = np.mean(powers) # Finding the correct threshold is tricky. If #peaks < peakcont, our # current threshold may be too low (extreme case: a single peak # containing all measurements), but it may also be too high (extreme # case: a single peak containing just one data point). Similarly, # #peaks > peakcount may be due to baseline noise causing lots of # small peaks, or due to peak noise (if the threshold is already rather # high). # For now, we first try a simple binary search: # The threshold is probably somewhere around the mean, so if # #peaks != peakcount and threshold < mean, we go up, and if # #peaks != peakcount and threshold >= mean, we go down. # If that doesn't work, we fall back to a linear search in 1 µW steps def direction_function(peakcount, power): if peakcount == opt['threshold-peakcount']: return 0 if power < bs_mean: return 1 return -1 threshold = peak_search(power, np.min(power), np.max(power), direction_function) if threshold == None: threshold = peak_search2(power, np.min(power), np.max(power), direction_function) if threshold != None: print('Threshold set to {:.0f} µW : {:.9f}'.format(threshold * 1e6, threshold)) opt['threshold'] = threshold else: print('Found no working threshold') if 'threshold' in opt: if opt['threshold'] == 'mean': opt['threshold'] = np.mean(powers) print('Threshold set to {:.0f} µW : {:.9f}'.format(opt['threshold'] * 1e6, opt['threshold'])) baseline_mean = 0 if np.any(powers < opt['threshold']): baseline_mean = np.mean(powers[powers < opt['threshold']]) print('Baseline mean: {:.0f} µW : {:.9f}'.format( baseline_mean * 1e6, baseline_mean)) if np.any(powers >= opt['threshold']): print('Peak mean: {:.0f} µW : {:.9f}'.format( np.mean(powers[powers >= opt['threshold']]) * 1e6, np.mean(powers[powers >= opt['threshold']]))) peaks = [] peak_start = -1 for i, dp in enumerate(powers): if dp >= opt['threshold'] and peak_start == -1: peak_start = i elif dp < opt['threshold'] and peak_start != -1: peaks.append((peak_start, i)) peak_start = -1 total_energy = 0 delta_energy = 0 for peak in peaks: duration = (peak[1] - peak[0]) * 1e-5 total_energy += np.mean(powers[peak[0] : peak[1]]) * duration delta_energy += (np.mean(powers[peak[0] : peak[1]]) - baseline_mean) * duration delta_powers = powers[peak[0] : peak[1]] - baseline_mean print('{:.2f}ms peak ({:f} -> {:f})'.format(duration * 1000, peak[0], peak[1])) print(' {:f} µJ / mean {:f} µW'.format( np.mean(powers[peak[0] : peak[1]]) * duration * 1e6, np.mean(powers[peak[0] : peak[1]]) * 1e6 )) measures = aggregate_measures(np.mean(delta_powers), delta_powers) print(' {:f} µW delta mean = {:0.1f}% / {:f} µW error'.format(np.mean(delta_powers) * 1e6, measures['smape'], measures['rmsd'] * 1e6 )) print('Peak energy mean: {:.0f} µJ : {:.9f}'.format( total_energy * 1e6 / len(peaks), total_energy / len(peaks))) print('Average per-peak energy (delta over baseline): {:.0f} µJ : {:.9f}'.format( delta_energy * 1e6 / len(peaks), delta_energy / len(peaks))) if 'stat' in opt: mean_current = np.mean(currents) mean_power = np.mean(powers) print('Mean current: {:.0f} µA : {:.9f}'.format(mean_current * 1e6, mean_current)) print('Mean power: {:.0f} µW : {:.9f}'.format(mean_power * 1e6, mean_power)) if 'plot' in opt: timestamps = np.arange(len(powers)) * 1e-5 pwrhandle, = plt.plot(timestamps, powers, 'b-', label='U*I', markersize=1) plt.legend(handles=[pwrhandle]) plt.xlabel('Time [s]') plt.ylabel('Power [W]') plt.grid(True) plt.show()