package FLAT::DFA; use strict; use base 'FLAT::NFA'; use Storable qw(dclone); use Carp; $|++; sub set_starting { my $self = shift; $self->SUPER::set_starting(@_); my $num = () = $self->get_starting; confess "DFA must have exactly one starting state" if $num != 1; } sub complement { my $self = $_[0]->clone; for my $s ($self->get_states) { $self->is_accepting($s) ? $self->unset_accepting($s) : $self->set_accepting($s); } return $self; } sub _TUPLE_ID { join "\0", @_ } sub _uniq { my %seen; grep { !$seen{$_}++ } @_; } ## this method still needs more work.. sub intersect { my @dfas = map { $_->as_dfa } @_; my $return = FLAT::DFA->new; my %newstates; my @alpha = _uniq( map { $_->alphabet } @dfas ); $_->_extend_alphabet(@alpha) for @dfas; my @start = map { $_->get_starting } @dfas; my $start = $newstates{ _TUPLE_ID(@start) } = $return->add_states(1); $return->set_starting($start); $return->set_accepting($start) if ! grep { ! $dfas[$_]->is_accepting( $start[$_] ) } 0 .. $#dfas; my @queue = (\@start); while (@queue) { my @tuple = @{ shift @queue }; for my $char (@alpha) { my @next = map { $dfas[$_]->successors( $tuple[$_], $char ) } 0 .. $#dfas; #warn "[@tuple] --> [@next] via $char\n"; if (not exists $newstates{ _TUPLE_ID(@next) }) { my $s = $newstates{ _TUPLE_ID(@next) } = $return->add_states(1); $return->set_accepting($s) if ! grep { ! $dfas[$_]->is_accepting( $next[$_] ) } 0 .. $#dfas; push @queue, \@next; } $return->add_transition( $newstates{ _TUPLE_ID(@tuple) }, $newstates{ _TUPLE_ID(@next) }, $char ); } } return $return; } # this is meant to enforce 1 starting state for a DFA, but it is getting us into trouble # when a DFA object calls unset_starting sub unset_starting { my $self = shift; $self->SUPER::unset_starting(@_); my $num = () = $self->unset_starting; croak "DFA must have exactly one starting state" if $num != 1; } #### transformations sub trim_sinks { my $self = shift; my $result = $self->clone(); foreach my $state ($self->array_complement([$self->get_states()],[$self->get_accepting()])) { my @ret = $self->successors($state,[$self->alphabet]); if (@ret) { if ($ret[0] == $state) { $result->delete_states($state) if ($result->is_state($state)); } } } return $result; } sub as_min_dfa { my $self = shift()->clone; my $N = $self->num_states; my @alphabet = $self->alphabet; my ($start) = $self->get_starting; my %final = map { $_ => 1 } $self->get_accepting; my @equiv = map [ (0) x ($_+1), (1) x ($N-$_-1) ], 0 .. $N-1; while (1) { my $changed = 0; for my $s1 (0 .. $N-1) { for my $s2 (grep { $equiv[$s1][$_] } 0 .. $N-1) { if ( 1 == grep defined, @final{$s1, $s2} ) { $changed = 1; $equiv[$s1][$s2] = 0; next; } for my $char (@alphabet) { my @t = sort { $a <=> $b } $self->successors([$s1,$s2], $char); next if @t == 1; if (not $equiv[ $t[0] ][ $t[1] ]) { $changed = 1; $equiv[$s1][$s2] = 0; } } }} last if !$changed; } my $result = (ref $self)->new; my %newstate; my @classes; for my $s (0 .. $N-1) { next if exists $newstate{$s}; my @c = ( $s, grep { $equiv[$s][$_] } 0 .. $N-1 ); push @classes, \@c; @newstate{@c} = ( $result->add_states(1) ) x @c; } for my $c (@classes) { my $s = $c->[0]; for my $char (@alphabet) { my ($next) = $self->successors($s, $char); $result->add_transition( $newstate{$s}, $newstate{$next}, $char ); } } $result->set_starting( $newstate{$start} ); $result->set_accepting( $newstate{$_} ) for $self->get_accepting; $result; } # the validity of a given string <-- executes symbols over DFA # if there is not transition for given state and symbol, it fails immediately # if the current state we're in is not final when symbols are exhausted, then it fails sub is_valid_string { my $self = shift; my $string = shift; chomp $string; my $OK = undef; my @stack = split('',$string); # this is confusing all funcs return arrays my @current = $self->get_starting(); my $current = pop @current; foreach (@stack) { my @next = $self->successors($current,$_); if (!@next) { return $OK; #<--returns undef bc no transition found } $current = $next[0]; } $OK++ if ($self->is_accepting($current)); return $OK; } # # Experimental!! # # DFT stuff in preparation for DFA pump stuff; sub as_node_list { my $self = shift; my %node = (); for my $s1 ($self->get_states) { $node{$s1} = {}; # initialize for my $s2 ($self->get_states) { my $t = $self->get_transition($s1, $s2); if (defined $t) { # array of symbols that $s1 will go to $s2 on... push(@{$node{$s1}{$s2}},split(',',$t->as_string)); } } } return %node; } sub as_acyclic_strings { my $self = shift; my %dflabel = (); # lookup table for dflable my %backtracked = (); # lookup table for backtracked edges my $lastDFLabel = 0; my @string = (); my %nodes = $self->as_node_list(); # output format is the actual PRE followed by all found strings $self->acyclic($self->get_starting(),\%dflabel,$lastDFLabel,\%nodes,\@string); } sub acyclic { my $self = shift; my $startNode = shift; my $dflabel_ref = shift; my $lastDFLabel = shift; my $nodes = shift; my $string = shift; # tree edge detection if (!exists($dflabel_ref->{$startNode})) { $dflabel_ref->{$startNode} = ++$lastDFLabel; # the order inwhich this link was explored foreach my $adjacent (keys(%{$nodes->{$startNode}})) { if (!exists($dflabel_ref->{$adjacent})) { # initial tree edge foreach my $symbol (@{$nodes->{$startNode}{$adjacent}}) { push(@{$string},$symbol); $self->acyclic($adjacent,\%{$dflabel_ref},$lastDFLabel,\%{$nodes},\@{$string}); if ($self->array_is_subset([$adjacent],[$self->get_accepting()])) { #< proof of concept printf("%s\n",join('',@{$string})); } pop(@{$string}); } } } } # remove startNode entry to facilitate acyclic path determination delete($dflabel_ref->{$startNode}); #$lastDFLabel--; return; }; sub as_dft_strings { my $self = shift; my $depth = 1; $depth = shift if (1 < $_[0]); my %dflabel = (); # scoped lookup table for dflable my %nodes = $self->as_node_list(); foreach (keys(%nodes)) { $dflabel{$_} = []; # initialize container (array) for multiple dflables for each node } my $lastDFLabel = 0; my @string = (); $self->dft($self->get_starting(),[$self->get_accepting()],\%dflabel,$lastDFLabel,\%nodes,\@string,$depth); } sub dft { my $self = shift; my $startNode = shift; my $goals_ref = shift; my $dflabel_ref = shift; my $lastDFLabel = shift; my $nodes = shift; my $string = shift; my $DEPTH = shift; # add start node to path my $c1 = @{$dflabel_ref->{$startNode}}; # get number of elements if ($DEPTH >= $c1) { push(@{$dflabel_ref->{$startNode}},++$lastDFLabel); foreach my $adjacent (keys(%{$nodes->{$startNode}})) { my $c2 = @{$dflabel_ref->{$adjacent}}; if ($DEPTH > $c2) { # "initial" tree edge foreach my $symbol (@{$nodes->{$startNode}{$adjacent}}) { push(@{$string},$symbol); $self->dft($adjacent,[@{$goals_ref}],$dflabel_ref,$lastDFLabel,$nodes,[@{$string}],$DEPTH); # assumes some base path found if ($self->array_is_subset([$adjacent],[@{$goals_ref}])) { printf("%s\n",join('',@{$string})); } pop(@{$string}); } } } # remove startNode entry to facilitate acyclic path determination pop(@{$dflabel_ref->{$startNode}}); $lastDFLabel--; } }; # # String gen using iterators (still experimental) # sub get_acyclic_sub { my $self = shift; my ($start,$nodelist_ref,$dflabel_ref,$string_ref,$accepting_ref,$lastDFLabel) = @_; my @ret = (); foreach my $adjacent (keys(%{$nodelist_ref->{$start}})) { $lastDFLabel++; if (!exists($dflabel_ref->{$adjacent})) { $dflabel_ref->{$adjacent} = $lastDFLabel; foreach my $symbol (@{$nodelist_ref->{$start}{$adjacent}}) { push(@{$string_ref},$symbol); my $string_clone = dclone($string_ref); my $dflabel_clone = dclone($dflabel_ref); push(@ret,sub { return $self->get_acyclic_sub($adjacent,$nodelist_ref,$dflabel_clone,$string_clone,$accepting_ref,$lastDFLabel); }); pop @{$string_ref}; } } } return {substack=>[@ret], lastDFLabel=>$lastDFLabel, string => ($self->array_is_subset([$start],[@{$accepting_ref}]) ? join('',@{$string_ref}) : undef)}; } sub init_acyclic_iterator { my $self = shift; my %dflabel = (); my @string = (); my $lastDFLabel = 0; my %nodelist = $self->as_node_list(); my @accepting = $self->get_accepting(); # initialize my @substack = (); my $r = $self->get_acyclic_sub($self->get_starting(),\%nodelist,\%dflabel,\@string,\@accepting,$lastDFLabel); push(@substack,@{$r->{substack}}); return sub { while (1) { if (!@substack) { return undef; } my $s = pop @substack; my $r = $s->(); push(@substack,@{$r->{substack}}); if ($r->{string}) { return $r->{string}; } } } } sub new_acyclic_string_generator { my $self = shift; return $self->init_acyclic_iterator(); } sub get_deepdft_sub { my $self = shift; my ($start,$nodelist_ref,$dflabel_ref,$string_ref,$accepting_ref,$lastDFLabel,$max) = @_; my @ret = (); my $c1 = @{$dflabel_ref->{$start}}; if ($c1 < $max) { push(@{$dflabel_ref->{$start}},++$lastDFLabel); foreach my $adjacent (keys(%{$nodelist_ref->{$start}})) { my $c2 = @{$dflabel_ref->{$adjacent}}; if ($c2 < $max) { foreach my $symbol (@{$nodelist_ref->{$start}{$adjacent}}) { push(@{$string_ref},$symbol); my $string_clone = dclone($string_ref); my $dflabel_clone = dclone($dflabel_ref); push(@ret,sub { return $self->get_deepdft_sub($adjacent,$nodelist_ref,$dflabel_clone,$string_clone,$accepting_ref,$lastDFLabel,$max); }); pop @{$string_ref}; } } } } return {substack=>[@ret], lastDFLabel=>$lastDFLabel, string => ($self->array_is_subset([$start],[@{$accepting_ref}]) ? join('',@{$string_ref}) : undef)}; } sub init_deepdft_iterator { my $self = shift; my $MAXLEVEL = shift; my %dflabel = (); my @string = (); my $lastDFLabel = 0; my %nodelist = $self->as_node_list(); foreach my $node (keys(%nodelist)) { $dflabel{$node} = []; # initializes anonymous arrays for all nodes } my @accepting = $self->get_accepting(); # initialize my @substack = (); my $r = $self->get_deepdft_sub($self->get_starting(),\%nodelist,\%dflabel,\@string,\@accepting,$lastDFLabel,$MAXLEVEL); push(@substack,@{$r->{substack}}); return sub { while (1) { if (!@substack) { return undef; } my $s = pop @substack; my $r = $s->(); push(@substack,@{$r->{substack}}); if ($r->{string}) { return $r->{string}; } } } } sub new_deepdft_string_generator { my $self = shift; my $MAXLEVEL = (@_ ? shift : 1); return $self->init_deepdft_iterator($MAXLEVEL); } 1; __END__ =head1 NAME FLAT::DFA - Deterministic finite automata =head1 SYNOPSIS A FLAT::DFA object is a finite automata whose transitions are labeled with single characters. Furthermore, each state has exactly one outgoing transition for each available label/character. =head1 USAGE In addition to implementing the interface specified in L and L, FLAT::DFA objects provide the following DFA-specific methods: =over =item $dfa-Eunset_starting Because a DFA, by definition, must have only ONE starting state, this allows one to unset the current start state so that a new one may be set. =item $dfa-Etrim_sinks This method returns a FLAT::DFA (though in theory an NFA) that is lacking a transition for all symbols from all states. This method eliminates all transitions from all states that lead to a sink state; it also eliminates the sink state. This has no affect on testing if a string is valid using C, discussed below. =item $dfa-Eas_min_dfa This method minimizes the number of states and transitions in the given DFA. The modifies the current/calling DFA object. =item $dfa-Eis_valid_string($string) This method tests if the given string is accepted by the DFA. =item $dfa-Eas_node_list This method returns a node list in the form of a hash. This node list may be viewed as a pure digraph, and is lacking in state names and transition symbols. =item $dfa-Eas_acyclic_strings The method is B, and it is suggested that one not use it. It returns all valid strings accepted by the DFA by exploring all acyclic paths that go from the start state and end in an accepting state. The issue with this method is that it finds and returns all strings at once. The iterator described below is much more ideal for actual use in an application. =item $dfa-Eas_dft_strings($depth) The method is B, and it is suggested that one not use it. It returns all valid strings accepted by the DFA using a depth first traversal. A valid string is formed when the traversal detects an accepting state, whether it is a terminal node or a node reached via a back edge. The issue with this method is that it finds and returns all strings at once. The iterator described below is much more ideal for actual use in an application. The argument, C<$depth> specifies how many times the traversal may actually pass through a previously visited node. It is therefore possible to safely explore DFAs that accept infinite languages. =item $dfa-Enew_acyclic_string_generator This allows one to initialize an iterator that returns a valid string on each successive call of the sub-ref that is returned. It returns all valid strings accepted by the DFA by exploring all acyclic paths that go from the start state and end in an accepting state. Example: #!/usr/bin/env perl use strict; use FLAT::DFA; use FLAT::NFA; use FLAT::PFA; use FLAT::Regex::WithExtraOps; my $PRE = "abc&(def)*"; my $dfa = FLAT::Regex::WithExtraOps->new($PRE)->as_pfa->as_nfa->as_dfa->as_min_dfa->trim_sinks; my $next = $dfa->new_acyclic_string_generator; print "PRE: $PRE\n"; print "Acyclic:\n"; while (my $string = $next->()) { print " $string\n"; } =item $dfa-Enew_deepdft_string_generator($depth) This allows one to initialize an iterator that returns a valid string on each successive call of the sub-ref that is returned. It returns all valid strings accepted by the DFA using a depth first traversal. A valid string is formed when the traversal detects an accepting state, whether it is a terminal node or a node reached via a back edge. The argument, C<$depth> specifies how many times the traversal may actually pass through a previously visited node. It is therefore possible to safely explore DFAs that accept infinite languages. #!/usr/bin/env perl use strict; use FLAT::DFA; use FLAT::NFA; use FLAT::PFA; use FLAT::Regex::WithExtraOps; my $PRE = "abc&(def)*"; my $dfa = FLAT::Regex::WithExtraOps->new($PRE)->as_pfa->as_nfa->as_dfa->as_min_dfa->trim_sinks; my $next = $dfa->new_deepdft_string_generator(); print "Deep DFT (default):\n"; for (1..10) { while (my $string = $next->()) { print " $string\n"; last; } } $next = $dfa->new_deepdft_string_generator(5); print "Deep DFT (5):\n"; for (1..10) { while (my $string = $next->()) { print " $string\n"; last; } } =back =head1 AUTHORS & ACKNOWLEDGEMENTS FLAT is written by Mike Rosulek Emike at mikero dot comE and Brett Estrade Eestradb at gmail dot comE. The initial version (FLAT::Legacy) by Brett Estrade was work towards an MS thesis at the University of Southern Mississippi. Please visit the Wiki at http://www.0x743.com/flat =head1 LICENSE This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.