package FLAT::PFA; use strict; use base 'FLAT::NFA'; use Carp; use FLAT::Transition; use constant LAMBDA => '#lambda'; # Note: in a PFA, states are made up of active nodes. In this implementation, we have # decided to retain the functionality of the state functions in FA.pm, although the entities # being manipulated are technically nodes, not states. States are only explicitly tracked # once the PFA is serialized into an NFA. Therefore, the TRANS member of the PFA object is # the nodal transition function, gamma. The state transition function, delta, is not used # in anyway, but is derived out of the PFA->NFA conversion process. # The new way of doing things eliminated from PFA.pm of FLAT::Legacy is the # need to explicitly track: start nodes, final nodes, symbols, and lambda & epsilon symbols, sub new { my $pkg = shift; my $self = $pkg->SUPER::new(@_); # <-- SUPER is FLAT::NFA return $self; } # Singleton is no different than the NFA singleton sub singleton { my ($class, $char) = @_; my $pfa = $class->new; if (not defined $char) { $pfa->add_states(1); $pfa->set_starting(0); } elsif ($char eq "") { $pfa->add_states(1); $pfa->set_starting(0); $pfa->set_accepting(0); } else { $pfa->add_states(2); $pfa->set_starting(0); $pfa->set_accepting(1); $pfa->set_transition(0, 1, $char); } return $pfa; } # attack of the clones sub as_pfa { $_[0]->clone() } sub set_starting { my ($self, @states) = @_; $self->_assert_states(@states); $self->{STATES}[$_]{starting} = 1 for @states; } # Creates a single start state with epsilon transitions from # the former start states; # Creates a single final state with epsilon transitions from # the former accepting states sub pinch { my $self = shift; my $symbol = shift; my @starting = $self->get_starting; if (@starting > 1) { my $newstart = $self->add_states(1); map {$self->add_transition($newstart,$_,$symbol)} @starting; $self->unset_starting(@starting); $self->set_starting($newstart); } # my @accepting = $self->get_accepting; if (@accepting > 1) { my $newfinal = $self->add_states(1); map {$self->add_transition($_,$newfinal,$symbol)} @accepting; $self->unset_accepting(@accepting); $self->set_accepting($newfinal); } return; } # Implement the joining of two PFAs with lambda transitions # Note: using epsilon pinches for simplicity sub shuffle { my @pfas = map { $_->as_pfa } @_; my $result = $pfas[0]->clone; $result->_swallow($_) for @pfas[1 .. $#pfas]; $result->pinch(LAMBDA); $result; } ############## sub is_tied { my ($self, $state) = @_; $self->_assert_states($state); return $self->{STATES}[$state]{tied}; } sub set_tied { my ($self, @states) = @_; $self->_assert_states(@states); $self->{STATES}[$_]{tied} = 1 for @states; } sub unset_tied { my ($self, @states) = @_; $self->_assert_states(@states); $self->{STATES}[$_]{tied} = 0 for @states; } sub get_tied { my $self = shift; return grep { $self->is_tied($_) } $self->get_states; } ############## # joins two PFAs in a union (or) - no change from NFA sub union { my @pfas = map { $_->as_pfa } @_; my $result = $pfas[0]->clone; $result->_swallow($_) for @pfas[1 .. $#pfas]; $result->pinch(''); $result; } # joins two PFAs via concatenation - no change from NFA sub concat { my @pfas = map { $_->as_pfa } @_; my $result = $pfas[0]->clone; my @newstate = ([ $result->get_states ]); my @start = $result->get_starting; for (1 .. $#pfas) { push @newstate, [ $result->_swallow( $pfas[$_] ) ]; } $result->unset_accepting($result->get_states); $result->unset_starting($result->get_states); $result->set_starting(@start); for my $pfa_id (1 .. $#pfas) { for my $s1 ($pfas[$pfa_id-1]->get_accepting) { for my $s2 ($pfas[$pfa_id]->get_starting) { $result->set_transition( $newstate[$pfa_id-1][$s1], $newstate[$pfa_id][$s2], "" ); }} } $result->set_accepting( @{$newstate[-1]}[ $pfas[-1]->get_accepting ] ); $result; } # forms closure around a the given PFA - no change from NFA sub kleene { my $result = $_[0]->clone; my ($newstart, $newfinal) = $result->add_states(2); $result->set_transition($newstart, $_, "") for $result->get_starting; $result->unset_starting( $result->get_starting ); $result->set_starting($newstart); $result->set_transition($_, $newfinal, "") for $result->get_accepting; $result->unset_accepting( $result->get_accepting ); $result->set_accepting($newfinal); $result->set_transition($newstart, $newfinal, ""); $result->set_transition($newfinal, $newstart, ""); $result; } sub as_nfa { my $self = shift; my $result = FLAT::NFA->new(); # Dstates is initially populated with the start state, which # is exactly the set of all nodes marked as a starting node my @Dstates = [sort($self->get_starting())]; # I suppose all start states are considered 'tied' my %DONE = (); # |- what about all accepting states? I think so... # the main while loop that ends when @Dstates becomes exhausted my %NEW = (); while (@Dstates) { my $current = pop(@Dstates); my $currentid = join(',',@{$current}); $DONE{$currentid}++; # mark done foreach my $symbol ($self->alphabet(),'') { # Sigma UNION epsilon if (LAMBDA eq $symbol) { my @NEXT = (); my @tmp = $self->successors([@{$current}],$symbol); if (@tmp) { my @pred = $self->predecessors([@tmp],LAMBDA); if ($self->array_is_subset([@pred],[@{$current}])) { push(@NEXT,@tmp,$self->array_complement([@{$current}],[@pred])); @NEXT = sort($self->array_unique(@NEXT)); my $nextid = join(',',@NEXT); push(@Dstates,[@NEXT]) if (!exists($DONE{$nextid})); # make new states if none exist and track if (!exists($NEW{$currentid})) {$NEW{$currentid} = $result->add_states(1)}; if (!exists($NEW{$nextid})) {$NEW{$nextid} = $result->add_states(1) }; $result->add_transition($NEW{$currentid},$NEW{$nextid},''); } } } else { foreach my $node (@{$current}) { my @tmp = $self->successors([$node],$symbol); foreach my $new (@tmp) { my @NEXT = (); push(@NEXT,$new,$self->array_complement([@{$current}],[$node])); @NEXT = sort($self->array_unique(@NEXT)); my $nextid = join(',',@NEXT); push(@Dstates,[@NEXT]) if (!exists($DONE{$nextid})); # make new states if none exist and track if (!exists($NEW{$currentid})) {$NEW{$currentid} = $result->add_states(1)}; if (!exists($NEW{$nextid})) {$NEW{$nextid} = $result->add_states(1) }; $result->add_transition($NEW{$currentid},$NEW{$nextid},$symbol); } } } } } $result->set_starting($NEW{join(",",sort $self->get_starting())}); $result->set_accepting($NEW{join(",",sort $self->get_accepting())}); return $result; } 1; __END__ =head1 NAME FLAT::PFA - Parallel finite automata =head1 SYNOPSIS A FLAT::PFA object is a finite automata whose transitions are labeled either with characters, the empty string (epsilon), or a concurrent line of execution (lambda). It essentially models two FSA in a non-deterministic way such that a string is valid it puts the FSA of the shuffled languages both into a final, or accepting, state. A PFA is an NFA, and as such exactly describes a regular language. A PFA contains nodes and states. A state is made up of whatever nodes happen to be active. There are two transition functions, nodal transitions and state transitions. When a PFA is converted into a NFA, there is no longer a need for nodes or nodal transitions, so they go are eliminated. PFA model state spaces much more compactly than NFA, and an N state PFA may represent 2**N non-deterministic states. This also means that a PFA may represent up to 2^(2^N) deterministic states. =head1 USAGE (not implemented yet) In addition to implementing the interface specified in L<FLAT> and L<FLAT::NFA>, FLAT::PFA objects provide the following PFA-specific methods: =over =item $pfa-E<gt>shuffle Shuffle construct for building a PFA out of a PRE (i.e., a regular expression with the shuffle operator) =item $pfa-E<gt>as_nfa Converts a PFA to an NFA by enumerating all states; similar to the Subset Construction Algorithm, it does not implement e-closure. Instead it treats epsilon transitions normally, and joins any states resulting from a lambda (concurrent) transition using an epsilon transition. =back =head1 AUTHORS & ACKNOWLEDGEMENTS FLAT is written by Mike Rosulek E<lt>mike at mikero dot comE<gt> and Brett Estrade E<lt>estradb at gmail dot comE<gt>. The initial version (FLAT::Legacy) by Brett Estrade was work towards an MS thesis at the University of Southern Mississippi. Please visit the Wiki at http://www.0x743.com/flat =head1 LICENSE This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.