#!/usr/bin/env python3 import logging from . import utils logger = logging.getLogger(__name__) class EventSequenceModel: def __init__(self, models): self.models = models def _event_normalizer(self, event): event_normalizer = lambda p: p if "/" in event: v1, v2 = event.split("/") if utils.is_numeric(v1): event = v2.strip() event_normalizer = lambda p: utils.soft_cast_float(v1) / p elif utils.is_numeric(v2): event = v1.strip() event_normalizer = lambda p: p / utils.soft_cast_float(v2) else: raise RuntimeError(f"Cannot parse '{event}'") return event, event_normalizer def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False): for event in events: event, event_normalizer = self._event_normalizer(event) nn, param = event.split("(") name, action = nn.split(".") param_model = None ref_model = None for model in self.models: if name in model.names and action in model.attributes(name): ref_model = model if use_lut: param_model = model.get_param_lut(allow_none=True) else: param_model, param_info = model.get_fitted() break if param_model is None: raise RuntimeError(f"Did not find a model for {name}.{action}") param = param.removesuffix(")") if param == "": param = dict() else: param = utils.parse_conf_str(param) param_list = utils.param_dict_to_list(param, ref_model.parameters) if not use_lut and not param_info(name, action).is_predictable(param_list): logging.warning( f"Cannot predict {name}.{action}({param}), falling back to static model" ) try: event_output = event_normalizer( param_model( name, action, param=param_list, ) ) except KeyError: if use_lut: logging.error( f"Cannot predict {name}.{action}({param}) from LUT model" ) else: logging.error(f"Cannot predict {name}.{action}({param}) from model") raise except TypeError: if not use_lut: logging.error(f"Cannot predict {name}.{action}({param}) from model") raise if aggregate == "sum": aggregate_init += event_output else: raise RuntimeError(f"Unknown aggregate type: {aggregate}") return aggregate_init