""" Utilities for parameter extraction from data layout. Parameters include the amount of keys, length of strings (both keys and values), length of lists, ane more. """ from protocol_benchmarks import codegen_for_lib import numpy as np import ubjson def _string_value_length(json): if type(json) == str: return len(json) if type(json) == dict: return sum(map(_string_value_length, json.values())) if type(json) == list: return sum(map(_string_value_length, json)) return 0 # TODO distinguish between int and uint, which is not visible from the # data value alone def _int_value_length(json): if type(json) == int: if json < 256: return 1 if json < 65536: return 2 return 4 if type(json) == dict: return sum(map(_int_value_length, json.values())) if type(json) == list: return sum(map(_int_value_length, json)) return 0 def _string_key_length(json): if type(json) == dict: return sum(map(len, json.keys())) + sum(map(_string_key_length, json.values())) return 0 def _num_keys(json): if type(json) == dict: return len(json.keys()) + sum(map(_num_keys, json.values())) return 0 def _num_of_type(json, wanted_type): ret = 0 if type(json) == wanted_type: ret = 1 if type(json) == dict: ret += sum(map(lambda x: _num_of_type(x, wanted_type), json.values())) if type(json) == list: ret += sum(map(lambda x: _num_of_type(x, wanted_type), json)) return ret def json_to_param(json): """Return numeric parameters describing the structure of JSON data.""" ret = dict() ret['strlen_keys'] = _string_key_length(json) ret['strlen_values'] = _string_value_length(json) ret['bytelen_int'] = _int_value_length(json) ret['num_int'] = _num_of_type(json, int) ret['num_float'] = _num_of_type(json, float) ret['num_str'] = _num_of_type(json, str) return ret class Protolog: """ Loader and postprocessor for raw protobench (protocol-modeling/benchmark.py) data. Converts data sorted by (arch,lib)/benchmark/index/attribute to data sorted by (benchmark,index)/arch/lib/attribute. Once constructed, a class object provides three members: libraries -- array of library:config elements found in the benchmark results architectures -- array of multipass architecture names aggregate -- enriched log data, ordered by benchmark: { ('benchmark name', 'sub-benchmark index') : { 'architecture' : { 'library:options' : { 'attribute' : value (usually int or array) } } } } aggregate attributes: bss_{nop,ser,serdes} : whole-program Block Storage Segment (BSS) size callcycles_raw : { 'C++ statement' : [CPU cycles for execution] ... }. Not adjusted for 'nop' cycles -> values are a few cycles higher than true duration cycles_{ser,des,enc,dec,encser,desdec} : cycles for complete (de)serialization step, measured using just one counter start/stop (not a sum of callcycles_raw entries). Adjusted for 'nop' cycles -> should give accurate function call duration data_{secnop,ser,serdes} : whole-program Data Segment size heap_{ser,des} : Maximum heap usage during step serialized_size : Size (Bytes) of serialized data stack_alloc_{ser,des} : Maximum stack usage (Bytes) during step. Based on online analysis (comparison of memory dumps) stack_set_{ser,des} : Number of stack bytes modified during step. Based on online analysis (comparison of memory dumps), should be smaller than the corresponding stack_alloc_ value text_{nop,ser,serdes} : whole-program Text Segment (code/Flash) size """ def _median_cycles(data, key): # There should always be more than just one measurement -- otherwise # something went wrong if len(data[key]) <= 1: return np.nan for val in data[key]: # bogus data if val > 10_000_000: return np.nan for val in data['nop']: # bogus data if val > 10_000_000: return np.nan # All measurements in data[key] cover the same instructions, so they # should be identical -> it's safe to take the median. # However, we leave out the first measurement as it is often bogus. if key == 'nop': return np.median(data['nop'][1:]) return max(0, int(np.median(data[key][1:]) - np.median(data['nop'][1:]))) def _median_callcycles(data): ret = dict() for line in data.keys(): ret[line] = np.median(data[line]) return ret idem = lambda x: x datamap = [ ['bss_nop', 'bss_size_nop', idem], ['bss_ser', 'bss_size_ser', idem], ['bss_serdes', 'bss_size_serdes', idem], ['callcycles_raw', 'callcycles', idem], ['callcycles_median', 'callcycles', _median_callcycles], # Used to remove nop cycles from callcycles_median ['cycles_nop', 'cycles', lambda x: Protolog._median_cycles(x, 'nop')], ['cycles_ser', 'cycles', lambda x: Protolog._median_cycles(x, 'ser')], ['cycles_des', 'cycles', lambda x: Protolog._median_cycles(x, 'des')], ['cycles_enc', 'cycles', lambda x: Protolog._median_cycles(x, 'enc')], ['cycles_dec', 'cycles', lambda x: Protolog._median_cycles(x, 'dec')], #['cycles_ser_arr', 'cycles', lambda x: np.array(x['ser'][1:]) - np.mean(x['nop'][1:])], #['cycles_des_arr', 'cycles', lambda x: np.array(x['des'][1:]) - np.mean(x['nop'][1:])], #['cycles_enc_arr', 'cycles', lambda x: np.array(x['enc'][1:]) - np.mean(x['nop'][1:])], #['cycles_dec_arr', 'cycles', lambda x: np.array(x['dec'][1:]) - np.mean(x['nop'][1:])], ['data_nop', 'data_size_nop', idem], ['data_ser', 'data_size_ser', idem], ['data_serdes', 'data_size_serdes', idem], ['heap_ser', 'heap_usage_ser', idem], ['heap_des', 'heap_usage_des', idem], ['serialized_size', 'serialized_size', idem], ['stack_alloc_ser', 'stack_online_ser', lambda x: x['allocated']], ['stack_set_ser', 'stack_online_ser', lambda x: x['used']], ['stack_alloc_des', 'stack_online_des', lambda x: x['allocated']], ['stack_set_des', 'stack_online_des', lambda x: x['used']], ['text_nop', 'text_size_nop', idem], ['text_ser', 'text_size_ser', idem], ['text_serdes', 'text_size_serdes', idem], ] def __init__(self, logfile): """ Load and enrich raw protobench log data. The enriched data can be accessed via the .aggregate class member, see the class documentation for details. """ with open(logfile, 'rb') as f: self.data = ubjson.load(f) self.libraries = set() self.architectures = set() self.aggregate = dict() for arch_lib in self.data.keys(): arch, lib, libopts = arch_lib.split(':') library = lib + ':' + libopts for benchmark in self.data[arch_lib].keys(): for benchmark_item in self.data[arch_lib][benchmark].keys(): subv = self.data[arch_lib][benchmark][benchmark_item] for aggregate_label, data_label, getter in Protolog.datamap: try: self.add_datapoint(arch, library, (benchmark, benchmark_item), subv, aggregate_label, data_label, getter) except KeyError: pass except TypeError as e: print('TypeError in {} {} {} {}: {} -> {}'.format( arch_lib, benchmark, benchmark_item, aggregate_label, subv[data_label]['v'], str(e))) pass codegen = codegen_for_lib(lib, libopts.split(','), subv['data']) if codegen.max_serialized_bytes != None: self.add_datapoint(arch, library, (benchmark, benchmark_item), subv, 'buffer_size', data_label, lambda x: codegen.max_serialized_bytes) else: self.add_datapoint(arch, library, (benchmark, benchmark_item), subv, 'buffer_size', data_label, lambda x: 0) #self.aggregate[(benchmark, benchmark_item)][arch][lib][aggregate_label] = getter(value[data_label]['v']) for key in self.aggregate.keys(): for arch in self.aggregate[key].keys(): for lib, val in self.aggregate[key][arch].items(): try: val['cycles_encser'] = val['cycles_enc'] + val['cycles_ser'] except KeyError: pass try: val['cycles_desdec'] = val['cycles_des'] + val['cycles_dec'] except KeyError: pass try: for line in val['callcycles_median'].keys(): val['callcycles_median'][line] -= val['cycles_nop'] except KeyError: pass try: val['total_dmem_ser'] = val['stack_alloc_ser'] val['total_dmem_ser'] += val['heap_ser'] except KeyError: pass try: val['total_dmem_des'] = val['stack_alloc_des'] val['total_dmem_des'] += val['heap_des'] except KeyError: pass try: val['total_dmem_serdes'] = max(val['total_dmem_ser'], val['total_dmem_des']) except KeyError: pass try: val['text_ser_delta'] = val['text_ser'] - val['text_nop'] val['text_serdes_delta'] = val['text_serdes'] - val['text_nop'] except KeyError: pass try: val['bss_ser_delta'] = val['bss_ser'] - val['bss_nop'] val['bss_serdes_delta'] = val['bss_serdes'] - val['bss_nop'] except KeyError: pass try: val['data_ser_delta'] = val['data_ser'] - val['data_nop'] val['data_serdes_delta'] = val['data_serdes'] - val['data_nop'] except KeyError: pass try: val['allmem_ser'] = val['text_ser'] + val['data_ser'] + val['bss_ser'] + val['total_dmem_ser'] - val['buffer_size'] val['allmem_serdes'] = val['text_serdes'] + val['data_serdes'] + val['bss_serdes'] + val['total_dmem_serdes'] - val['buffer_size'] except KeyError: pass def add_datapoint(self, arch, lib, key, value, aggregate_label, data_label, getter): """ Set self.aggregate[key][arch][lib][aggregate_Label] = getter(value[data_label]['v']). Additionally, add lib to self.libraries and arch to self.architectures key usually is ('benchmark name', 'sub-benchmark index'). """ if data_label in value and 'v' in value[data_label]: self.architectures.add(arch) self.libraries.add(lib) if not key in self.aggregate: self.aggregate[key] = dict() if not arch in self.aggregate[key]: self.aggregate[key][arch] = dict() if not lib in self.aggregate[key][arch]: self.aggregate[key][arch][lib] = dict() self.aggregate[key][arch][lib][aggregate_label] = getter(value[data_label]['v'])