#!/usr/bin/env python3 import csv from itertools import chain, combinations import io import json import numpy as np import os from scipy.cluster.vq import kmeans2 import struct import sys import tarfile from multiprocessing import Pool def running_mean(x, N): cumsum = np.cumsum(np.insert(x, 0, 0)) return (cumsum[N:] - cumsum[:-N]) / N def is_numeric(n): if n == None: return False try: int(n) return True except ValueError: return False def float_or_nan(n): if n == None: return np.nan try: return float(n) except ValueError: return np.nan def append_if_set(aggregate, data, key): if key in data: aggregate.append(data[key]) def mean_or_none(arr): if len(arr): return np.mean(arr) return -1 def aggregate_measures(aggregate, actual): aggregate_array = np.array([aggregate] * len(actual)) return regression_measures(aggregate_array, np.array(actual)) def regression_measures(predicted, actual): deviations = predicted - actual if len(deviations) == 0: return {} measures = { 'mae' : np.mean(np.abs(deviations), dtype=np.float64), 'msd' : np.mean(deviations**2, dtype=np.float64), 'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64), 'ssr' : np.sum(deviations**2, dtype=np.float64), } if np.all(actual != 0): measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure if np.all(np.abs(predicted) + np.abs(actual) != 0): measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100 return measures def powerset(iterable): s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) class Keysight: def __init__(self): pass def load_data(self, filename): with open(filename) as f: for i, l in enumerate(f): pass timestamps = np.ndarray((i-3), dtype=float) currents = np.ndarray((i-3), dtype=float) # basically seek back to start with open(filename) as f: for _ in range(4): next(f) reader = csv.reader(f, delimiter=',') for i, row in enumerate(reader): timestamps[i] = float(row[0]) currents[i] = float(row[2]) * -1 return timestamps, currents def _preprocess_measurement(measurement): setup = measurement['setup'] mim = MIMOSA(float(setup['mimosa_voltage']), int(setup['mimosa_shunt'])) charges, triggers = mim.load_data(measurement['content']) trigidx = mim.trigger_edges(triggers) triggers = [] cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10)) calfunc, caldata = mim.calibration_function(charges, cal_edges) vcalfunc = np.vectorize(calfunc, otypes=[np.float64]) processed_data = { 'info' : measurement['info'], 'setup' : measurement['setup'], 'triggers' : len(trigidx), 'first_trig' : trigidx[0] * 10, 'calibration' : caldata, 'trace' : mim.analyze_states(charges, trigidx, vcalfunc) } return processed_data class AEMRAnalyzer: def __init__(self, filename): self.filename = filename self.version = 0 def _state_is_too_short(self, online, offline, state_duration, next_transition): # We cannot control when an interrupt causes a state to be left if next_transition['plan']['level'] == 'epilogue': return False # Note: state_duration is stored as ms, not us return offline['us'] < state_duration * 500 def _state_is_too_long(self, online, offline, state_duration, prev_transition): # If the previous state was left by an interrupt, we may have some # waiting time left over. So it's okay if the current state is longer # than expected. if prev_transition['plan']['level'] == 'epilogue': return False # state_duration is stored as ms, not us return offline['us'] > state_duration * 1500 def _measurement_is_valid(self, processed_data): state_duration = processed_data['setup']['state_duration'] # Check trigger count if self.sched_trigger_count != processed_data['triggers']: processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format( got = processed_data['triggers'], exp = self.sched_trigger_count ) return False # Check state durations. Very short or long states can indicate a # missed trigger signal which wasn't detected due to duplicate # triggers elsewhere online_datapoints = [] for run_idx, run in enumerate(self.traces): for trace_part_idx in range(len(run['trace'])): online_datapoints.append((run_idx, trace_part_idx)) for offline_idx, online_ref in enumerate(online_datapoints): online_run_idx, online_trace_part_idx = online_ref offline_trace_part = processed_data['trace'][offline_idx] online_trace_part = self.traces[online_run_idx]['trace'][online_trace_part_idx] if online_trace_part['isa'] != offline_trace_part['isa']: processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format( off_idx = offline_idx, on_idx = online_run_idx, on_sub = online_trace_part_idx, on_name = online_trace_part['name'], off_isa = offline_trace_part['isa'], on_isa = online_trace_part['isa']) return False if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED': online_prev_transition = self.traces[online_run_idx]['trace'][online_trace_part_idx-1] online_next_transition = self.traces[online_run_idx]['trace'][online_trace_part_idx+1] if self._state_is_too_short(online_trace_part, offline_trace_part, state_duration, online_next_transition): processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format( off_idx = offline_idx, on_idx = online_run_idx, on_sub = online_trace_part_idx, on_name = online_trace_part['name'], dur = offline_trace_part['us']) return False if self._state_is_too_long(online_trace_part, offline_trace_part, state_duration, online_prev_transition): processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)'.format( off_idx = offline_idx, on_idx = online_run_idx, on_sub = online_trace_part_idx, on_name = online_trace_part['name'], dur = offline_trace_part['us']) return False return True def _merge_measurement_into_online_data(self, measurement): online_datapoints = [] for run_idx, run in enumerate(self.traces): for trace_part_idx in range(len(run['trace'])): online_datapoints.append((run_idx, trace_part_idx)) for offline_idx, online_ref in enumerate(online_datapoints): online_run_idx, online_trace_part_idx = online_ref offline_trace_part = measurement['trace'][offline_idx] online_trace_part = self.traces[online_run_idx]['trace'][online_trace_part_idx] if not 'offline' in online_trace_part: online_trace_part['offline'] = [offline_trace_part] else: online_trace_part['offline'].append(offline_trace_part) def preprocess(self): if self.version == 0: self.preprocess_0() # Loads raw MIMOSA data and turns it into measurements which are ready to # be analyzed. def preprocess_0(self): with tarfile.open(self.filename) as tf: setup = json.load(tf.extractfile('setup.json')) self.traces = json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json')) mim_files = [] for member in tf.getmembers(): _, extension = os.path.splitext(member.name) if extension == '.mim': mim_files.append({ 'setup' : setup, 'info' : member, 'content' : tf.extractfile(member).read() }) with Pool() as pool: measurements = pool.map(_preprocess_measurement, mim_files) self.sched_trigger_count = 0 for run in self.traces: self.sched_trigger_count += len(run['trace']) num_valid = 0 for measurement in measurements: if self._measurement_is_valid(measurement): self._merge_measurement_into_online_data(measurement) num_valid += 1 else: print('[W] Skipping {m:s}: {e:s}'.format( m = measurement['info'].name, e = measurement['error'])) print('[I] {num_valid:d}/{num_total:d} measurements are valid'.format( num_valid = num_valid, num_total = len(measurements))) def analyze(self): pass class MIMOSA: def __init__(self, voltage, shunt): self.voltage = voltage self.shunt = shunt self.r1 = 984 # "1k" self.r2 = 99013 # "100k" def charge_to_current_nocal(self, charge): ua_max = 1.836 / self.shunt * 1000000 ua_step = ua_max / 65535 return charge * ua_step def _load_tf(self, tf): num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32) triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8) with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f: content = f.read() iterator = struct.iter_unpack('> 4) triggers[i] = (word[0] & 0x08) >> 3 i += 1 return charges, triggers def load_data(self, raw_data): with io.BytesIO(raw_data) as data_object: with tarfile.open(fileobj = data_object) as tf: return self._load_tf(tf) def currents_nocal(self, charges): ua_max = 1.836 / self.shunt * 1000000 ua_step = ua_max / 65535 return charges.astype(np.double) * ua_step def trigger_edges(self, triggers): trigidx = [] prevtrig = triggers[0] # the device is reset for MIMOSA calibration in the first 10s and may # send bogus interrupts -> bogus triggers for i in range(1000000, triggers.shape[0]): trig = triggers[i] if trig != prevtrig: # Due to MIMOSA's integrate-read-reset cycle, the trigger # appears two points (20µs) before the corresponding data trigidx.append(i+2) prevtrig = trig return trigidx def calibration_edges(self, currents): r1idx = 0 r2idx = 0 ua_r1 = self.voltage / self.r1 * 1000000 # first second may be bogus for i in range(100000, len(currents)): if r1idx == 0 and currents[i] > ua_r1 * 0.6: r1idx = i elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4: r2idx = i # 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2 # allow 5ms buffer in both directions to account for bouncing relais contacts return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500 def calibration_function(self, charges, cal_edges): dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges if dis_start < 0: dis_start = 0 chg_r0 = charges[dis_start:dis_end] chg_r1 = charges[r1_start:r1_end] chg_r2 = charges[r2_start:r2_end] cal_0_mean = np.mean(chg_r0) cal_0_std = np.std(chg_r0) cal_r1_mean = np.mean(chg_r1) cal_r1_std = np.std(chg_r1) cal_r2_mean = np.mean(chg_r2) cal_r2_std = np.std(chg_r2) ua_r1 = self.voltage / self.r1 * 1000000 ua_r2 = self.voltage / self.r2 * 1000000 if cal_r2_mean > cal_0_mean: b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean) else: print('[W] 0 uA == %.f uA during calibration' % (ua_r2)) b_lower = 0 b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean) b_total = (ua_r1 - 0) / (cal_r1_mean - cal_0_mean) a_lower = -b_lower * cal_0_mean a_upper = -b_upper * cal_r2_mean a_total = -b_total * cal_0_mean if self.shunt == 680: # R1 current is higher than shunt range -> only use R2 for calibration def calfunc(charge): if charge < cal_0_mean: return 0 else: return charge * b_lower + a_lower else: def calfunc(charge): if charge < cal_0_mean: return 0 if charge <= cal_r2_mean: return charge * b_lower + a_lower else: return charge * b_upper + a_upper + ua_r2 caldata = { 'edges' : [x * 10 for x in cal_edges], 'offset': cal_0_mean, 'offset2' : cal_r2_mean, 'slope_low' : b_lower, 'slope_high' : b_upper, 'add_low' : a_lower, 'add_high' : a_upper, 'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage, 'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage, 'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage, 'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage, 'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage, 'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage, } #print("if charge < %f : return 0" % cal_0_mean) #print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower)) #print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2)) return calfunc, caldata def calcgrad(self, currents, threshold): grad = np.gradient(running_mean(currents * self.voltage, 10)) # len(grad) == len(currents) - 9 subst = [] lastgrad = 0 for i in range(len(grad)): # minimum substate duration: 10ms if np.abs(grad[i]) > threshold and i - lastgrad > 50: # account for skew introduced by running_mean and current # ramp slope (parasitic capacitors etc.) subst.append(i+10) lastgrad = i if lastgrad != i: subst.append(i+10) return subst # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere # Sache nach noetiger threshold. postprocessing mit # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad)) # TODO bei substates / index foo den offset durch running_mean beachten # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter # uebergaenge dadurch? def gradfoo(self, currents): gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10))) gradmin = np.min(gradients) gradmax = np.max(gradients) threshold = np.mean([gradmin, gradmax]) gradidx = self.calcgrad(currents, threshold) num_substates = 2 while len(gradidx) != num_substates: if gradmax - gradmin < 0.1: # We did our best return threshold, gradidx if len(gradidx) > num_substates: gradmin = threshold else: gradmax = threshold threshold = np.mean([gradmin, gradmax]) gradidx = self.calcgrad(currents, threshold) return threshold, gradidx def analyze_states(self, charges, trigidx, ua_func): previdx = 0 is_state = True iterdata = [] for idx in trigidx: range_raw = charges[previdx:idx] range_ua = ua_func(range_raw) substates = {} if previdx != 0 and idx - previdx > 200: thr, subst = 0, [] #self.gradfoo(range_ua) if len(subst): statelist = [] prevsubidx = 0 for subidx in subst: statelist.append({ 'duration': (subidx - prevsubidx) * 10, 'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage), 'uW_std' : np.std(range_ua[prevsubidx : subidx] * self.voltage), }) prevsubidx = subidx substates = { 'threshold' : thr, 'states' : statelist, } isa = 'state' if not is_state: isa = 'transition' data = { 'isa': isa, 'clip_rate' : np.mean(range_raw == 65535), 'raw_mean': np.mean(range_raw), 'raw_std' : np.std(range_raw), 'uW_mean' : np.mean(range_ua * self.voltage), 'uW_std' : np.std(range_ua * self.voltage), 'us' : (idx - previdx) * 10, } if 'states' in substates: data['substates'] = substates ssum = np.sum(list(map(lambda x : x['duration'], substates['states']))) if ssum != data['us']: print("ERR: duration %d vs %d" % (data['us'], ssum)) if isa == 'transition': # subtract average power of previous state # (that is, the state from which this transition originates) data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean'] # placeholder to avoid extra cases in the analysis data['uW_mean_delta_next'] = data['uW_mean'] data['timeout'] = iterdata[-1]['us'] elif len(iterdata) > 0: # subtract average power of next state # (the state into which this transition leads) iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean'] iterdata.append(data) previdx = idx is_state = not is_state return iterdata