""" Utilities for analytic description of parameter-dependent model attributes. This module provides classes and helper functions useful for least-squares regression and general handling of model functions. """ from itertools import chain, combinations import numpy as np import re from scipy import optimize from utils import is_numeric arg_support_enabled = True def powerset(iterable): """ Calculate powerset of given items. Returns an iterable containing one tuple for each powerset element. Example: powerset([1, 2]) -> [(), (1), (2), (1, 2)] """ s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) class ParamFunction: """ A one-dimensional model function, ready for least squares optimization and similar. Supports validity checks (e.g. if it is undefined for x <= 0) and an error measure. """ def __init__(self, param_function, validation_function, num_vars): """ Create function object suitable for regression analysis. This documentation assumes that 1-dimensional functions (-> single float as model input) are used. However, n-dimensional functions (-> list of float as model input) are also supported. arguments: param_function -- regression function. Must have the signature (reg_param, model_param) -> float. reg_param is a list of regression variable values, model_param is the model input value (float). Example: lambda rp, mp: rp[0] + rp[1] * mp validation_function -- function used to check whether param_function is defined for a given model_param. Signature: model_param -> bool Example: lambda mp: mp > 0 num_vars -- How many regression variables are used by this function, i.e., the length of param_function's reg_param argument. """ self._param_function = param_function self._validation_function = validation_function self._num_variables = num_vars def is_valid(self, arg): """ Check whether the regression function is defined for the given argument. Returns bool. """ return self._validation_function(arg) def eval(self, param, args): """ Evaluate regression function. arguments: param -- regression variable values (list of float) arg -- model input (float) """ return self._param_function(param, args) def error_function(self, P, X, y): """ Calculate model error. arguments: P -- optimized regression variables (list of float) X -- model input (float) y -- expected output from ground truth (float) Returns deviation between model and ground truth (float). """ return self._param_function(P, X) - y class AnalyticFunction: """ A multi-dimensional model function, generated from a string, which can be optimized using regression. The function describes a single model attribute (e.g. TX duration or send(...) energy) and how it is influenced by model parameters such as configured bit rate or packet length. """ def __init__(self, function_str, parameters, num_args, verbose = True, regression_args = None): """ Create a new AnalyticFunction object from a function string. arguments: function_str -- the function. Refer to regression variables using regression_arg(123), to parameters using parameter(name), and to function arguments (if any) using function_arg(123). Example: "regression_arg(0) + regression_arg(1) * parameter(txbytes)" parameters -- list containing the names of all model parameters, including those not used in function_str, sorted lexically. Sorting is mandatory, as parameter indexes (and not names) are used internally. num_args -- number of local function arguments, if any. Set to 0 if the model attribute does not belong to a function or if function arguments are not included in the model. verbose -- complain about odd events regression_args -- Initial regression variable values, both for function usage and least squares optimization. If unset, defaults to [1, 1, 1, ...] """ self._parameter_names = parameters self._num_args = num_args self._model_str = function_str rawfunction = function_str self._dependson = [False] * (len(parameters) + num_args) self.fit_success = False self.verbose = verbose if type(function_str) == str: num_vars_re = re.compile(r'regression_arg\(([0-9]+)\)') num_vars = max(map(int, num_vars_re.findall(function_str))) + 1 for i in range(len(parameters)): if rawfunction.find('parameter({})'.format(parameters[i])) >= 0: self._dependson[i] = True rawfunction = rawfunction.replace('parameter({})'.format(parameters[i]), 'model_param[{:d}]'.format(i)) for i in range(0, num_args): if rawfunction.find('function_arg({:d})'.format(i)) >= 0: self._dependson[len(parameters) + i] = True rawfunction = rawfunction.replace('function_arg({:d})'.format(i), 'model_param[{:d}]'.format(len(parameters) + i)) for i in range(num_vars): rawfunction = rawfunction.replace('regression_arg({:d})'.format(i), 'reg_param[{:d}]'.format(i)) self._function_str = rawfunction self._function = eval('lambda reg_param, model_param: ' + rawfunction) else: self._function_str = 'raise ValueError' self._function = function_str if regression_args: self._regression_args = regression_args.copy() self._fit_success = True elif type(function_str) == str: self._regression_args = list(np.ones((num_vars))) else: self._regression_args = [] def get_fit_data(self, by_param, state_or_tran, model_attribute): """ Return training data suitable for scipy.optimize.least_squares. arguments: by_param -- measurement data, partitioned by state/transition name and parameter/arg values. This function only uses by_param[(state_or_tran, *)][model_attribute], which must be a list or 1-D NumPy array containing the ground truth. The parameter values in (state_or_tran, *) must be numeric for all parameters this function depends on -- otherwise, the corresponding data will be left out. Parameter values must be ordered according to the order of parameter names used in the ParamFunction constructor. Argument values (if any) always come after parameters, in the order of their index in the function signature. state_or_tran -- state or transition name, e.g. "TX" or "send" model_attribute -- model attribute name, e.g. "power" or "duration" returns (X, Y, num_valid, num_total): X -- 2-D NumPy array of parameter combinations (model input). First dimension is the parameter/argument index, the second dimension contains its values. Example: X[0] contains the first parameter's values. Y -- 1-D NumPy array of training data (desired model output). num_valid -- amount of distinct parameter values suitable for optimization num_total -- total amount of distinct parameter values """ dimension = len(self._parameter_names) + self._num_args X = [[] for i in range(dimension)] Y = [] num_valid = 0 num_total = 0 for key, val in by_param.items(): if key[0] == state_or_tran and len(key[1]) == dimension: valid = True num_total += 1 for i in range(dimension): if self._dependson[i] and not is_numeric(key[1][i]): valid = False if valid: num_valid += 1 Y.extend(val[model_attribute]) for i in range(dimension): if self._dependson[i]: X[i].extend([float(key[1][i])] * len(val[model_attribute])) else: X[i].extend([np.nan] * len(val[model_attribute])) elif key[0] == state_or_tran and len(key[1]) != dimension: vprint(self.verbose, '[W] Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.'.format(state_or_tran, model_attribute, len(key[1]), dimension)) X = np.array(X) Y = np.array(Y) return X, Y, num_valid, num_total def fit(self, by_param, state_or_tran, model_attribute): """ Fit the function on measurements via least squares regression. arguments: by_param -- measurement data, partitioned by state/transition name and parameter/arg values state_or_tran -- state or transition name, e.g. "TX" or "send" model_attribute -- model attribute name, e.g. "power" or "duration" The ground truth is read from by_param[(state_or_tran, *)][model_attribute], which must be a list or 1-D NumPy array. Parameter values must be ordered according to the parameter names in the constructor. If argument values are present, they must come after parameter values in the order of their appearance in the function signature. """ X, Y, num_valid, num_total = self.get_fit_data(by_param, state_or_tran, model_attribute) if num_valid > 2: error_function = lambda P, X, y: self._function(P, X) - y try: res = optimize.least_squares(error_function, self._regression_args, args=(X, Y), xtol=2e-15) except ValueError as err: vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, err, self._model_str)) return if res.status > 0: self._regression_args = res.x self.fit_success = True else: vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, res.message, self._model_str)) else: vprint(self.verbose, '[W] Insufficient amount of valid parameter keys, cannot fit {}/{}'.format(state_or_tran, model_attribute)) def is_predictable(self, param_list): """ Return whether the model function can be evaluated on the given parameter values. The first value corresponds to the lexically first model parameter, etc. All parameters must be set, not just the ones this function depends on. Returns False iff a parameter the function depends on is not numeric (e.g. None). """ for i, param in enumerate(param_list): if self._dependson[i] and not is_numeric(param): return False return True def eval(self, param_list, arg_list = []): """ Evaluate model function with specified param/arg values. arguments: param_list -- parameter values (list of float). First item corresponds to lexically first parameter, etc. arg_list -- argument values (list of float), if arguments are used. """ if len(self._regression_args) == 0: return self._function(param_list, arg_list) return self._function(self._regression_args, param_list) class analytic: """ Utilities for analytic description of parameter-dependent model attributes and regression analysis. provided functions: functions -- retrieve pre-defined set of regression function candidates function_powerset -- combine several per-parameter functions into a single AnalyticFunction """ _num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1")) _num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1")) _num1 = np.vectorize(lambda x: bin(int(x)).count("1")) _safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.) _safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.) _safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x))) _function_map = { 'linear' : lambda x: x, 'logarithmic' : np.log, 'logarithmic1' : lambda x: np.log(x + 1), 'exponential' : np.exp, 'square' : lambda x : x ** 2, 'inverse' : lambda x : 1 / x, 'sqrt' : lambda x: np.sqrt(np.abs(x)), 'num0_8' : _num0_8, 'num0_16' : _num0_16, 'num1' : _num1, 'safe_log' : lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1., 'safe_inv' : lambda x: 1 / x if np.abs(x) > 0.001 else 1., 'safe_sqrt': lambda x: np.sqrt(np.abs(x)), } def functions(safe_functions_enabled = False): """ Retrieve pre-defined set of regression function candidates. Returns a dict of functions which are typical for energy/timing behaviour of embedded hardware, e.g. linear, exponential or inverse dependency on a configuration setting/runtime variable. arguments: safe_functions_enabled -- Include "safe" variants of functions with limited argument range, e.g. a safe inverse which returns 1 when dividing by 0. Each function is a ParamFunction object. In most cases, two regression variables are expected. """ functions = { 'linear' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param, lambda model_param: True, 2 ), 'logarithmic' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param), lambda model_param: model_param > 0, 2 ), 'logarithmic1' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param + 1), lambda model_param: model_param > -1, 2 ), 'exponential' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.exp(model_param), lambda model_param: model_param <= 64, 2 ), #'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2, 'square' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param ** 2, lambda model_param: True, 2 ), 'inverse' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] / model_param, lambda model_param: model_param != 0, 2 ), 'sqrt' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.sqrt(model_param), lambda model_param: model_param >= 0, 2 ), 'num0_8' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_8(model_param), lambda model_param: True, 2 ), 'num0_16' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_16(model_param), lambda model_param: True, 2 ), 'num1' : ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num1(model_param), lambda model_param: True, 2 ), } if safe_functions_enabled: functions['safe_log'] = ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_log(model_param), lambda model_param: True, 2 ) functions['safe_inv'] = ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_inv(model_param), lambda model_param: True, 2 ) functions['safe_sqrt'] = ParamFunction( lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_sqrt(model_param), lambda model_param: True, 2 ) return functions def _fmap(reference_type, reference_name, function_type): """Map arg/parameter name and best-fit function name to function text suitable for AnalyticFunction.""" ref_str = '{}({})'.format(reference_type,reference_name) if function_type == 'linear': return ref_str if function_type == 'logarithmic': return 'np.log({})'.format(ref_str) if function_type == 'logarithmic1': return 'np.log({} + 1)'.format(ref_str) if function_type == 'exponential': return 'np.exp({})'.format(ref_str) if function_type == 'exponential': return 'np.exp({})'.format(ref_str) if function_type == 'square': return '({})**2'.format(ref_str) if function_type == 'inverse': return '1/({})'.format(ref_str) if function_type == 'sqrt': return 'np.sqrt({})'.format(ref_str) return 'analytic._{}({})'.format(function_type, ref_str) def function_powerset(fit_results, parameter_names, num_args): """ Combine per-parameter regression results into a single multi-dimensional function. arguments: fit_results -- results dict. One element per parameter, each containing a dict of the form {'best' : name of function with best fit}. Must not include parameters which do not influence the model attribute. Example: {'txpower' : {'best': 'exponential'}} parameter_names -- Parameter names, including those left out in fit_results because they do not influence the model attribute. Must be sorted lexically. Example: ['bitrate', 'txpower'] num_args -- number of local function arguments, if any. Set to 0 if the model attribute does not belong to a function or if function arguments are not included in the model. Returns an AnalyticFunction instantce corresponding to the combined function. """ buf = '0' arg_idx = 0 for combination in powerset(fit_results.items()): buf += ' + regression_arg({:d})'.format(arg_idx) arg_idx += 1 for function_item in combination: if arg_support_enabled and is_numeric(function_item[0]): buf += ' * {}'.format(analytic._fmap('function_arg', function_item[0], function_item[1]['best'])) else: buf += ' * {}'.format(analytic._fmap('parameter', function_item[0], function_item[1]['best'])) return AnalyticFunction(buf, parameter_names, num_args)