""" Harnesses for various types of benchmark logs. tbd """ import subprocess import re # TODO prepare benchmark log JSON with parameters etc. # Should be independent of PTA class, as benchmarks may also be # generated otherwise and it should also work with AnalyticModel (which does # not have states) class TransitionHarness: """ TODO :param done: True if the specified amount of iterations have been logged. :param synced: True if `parser_cb` has synchronized with UART output, i.e., the benchmark has successfully started. :param traces: List of annotated PTA traces from benchmark execution. This list is updated during UART logging and should only be read back when `done` is True. Uses the standard dfatool trace format: `traces` is a list of `{'id': ..., 'trace': ...}` dictionaries, each of which represents a single PTA trace (AKA run). Each `trace` is in turn a list of state or transition dictionaries with the following attributes: * `isa`: 'state' or 'transition' * `name`: state or transition name * `parameter`: currently valid parameter values. If normalization is used, they are already normalized. Each parameter value is either a primitive int/float/str value (-> constant for each iteration) or a list of primitive values (-> set by the return value of the current run, not necessarily constan) * `args`: function arguments, if isa == 'transition' """ def __init__(self, gpio_pin = None, pta = None, log_return_values = False, repeat = 0, post_transition_delay_us = 0): """ Create a new TransitionHarness :param gpio_pin: multipass GPIO Pin used for transition synchronization with an external measurement device, e.g. `GPIO::p1_0`. Optional. The GPIO output is high iff a transition is executing :param pta: PTA object. Needed to map UART output IDs to states and transitions :param log_return_values: Log return values of transition function calls? :param repeat: How many times to run the benchmark until setting `one`, default 0. When 0, `done` is never set. :param post_transition_delay_us: If set, inject `arch.delay_us` after each transition, before logging the transition as completed (and releasing `gpio_pin`). This artificially increases transition duration by the specified time and is useful if an external measurement device's resolution is lower than the expected minimum transition duration. """ self.gpio_pin = gpio_pin self.pta = pta self.log_return_values = log_return_values self.repeat = repeat self.post_transition_delay_us = post_transition_delay_us self.reset() def copy(self): new_object = __class__(gpio_pin = self.gpio_pin, pta = self.pta, log_return_values = self.log_return_values, repeat = self.repeat, post_transition_delay_us = self.post_transition_delay_us) new_object.traces = self.traces.copy() new_object.trace_id = self.trace_id return new_object def reset(self): """ Reset harness for a new benchmark. Truncates `traces`, `trace_id`, `done`, and `synced`. """ self.traces = [] self.trace_id = 0 self.repetitions = 0 self.done = False self.synced = False def restart(self): """ Reset harness for a new execution of the current benchmark. Resets `done` and `synced`. """ self.repetitions = 0 self.done = False self.synced = False def global_code(self): """Return global (pre-`main()`) C++ code needed for tracing.""" ret = '' if self.gpio_pin != None: ret += '#define PTALOG_GPIO {}\n'.format(self.gpio_pin) if self.log_return_values: ret += '#define PTALOG_WITH_RETURNVALUES\n' ret += 'uint16_t transition_return_value;\n' ret += '#include "object/ptalog.h"\n' if self.gpio_pin != None: ret += 'PTALog ptalog({});\n'.format(self.gpio_pin) else: ret += 'PTALog ptalog;\n' return ret def start_benchmark(self, benchmark_id = 0): """Return C++ code to signal benchmark start to harness.""" return 'ptalog.startBenchmark({:d});\n'.format(benchmark_id) def start_trace(self): """Prepare a new trace/run in the internal `.traces` structure.""" self.traces.append({ 'id' : self.trace_id, 'trace' : list(), }) self.trace_id += 1 def append_state(self, state_name, param): """ Append a state to the current run in the internal `.traces` structure. :param state_name: state name :param param: parameter dict """ self.traces[-1]['trace'].append({ 'name': state_name, 'isa': 'state', 'parameter': param, }) def append_transition(self, transition_name, param, args = []): """ Append a transition to the current run in the internal `.traces` structure. :param transition_name: transition name :param param: parameter dict :param args: function arguments (optional) """ self.traces[-1]['trace'].append({ 'name': transition_name, 'isa': 'transition', 'parameter': param, 'args' : args, }) def start_run(self): """Return C++ code used to start a new run/trace.""" return 'ptalog.reset();\n' def pass_transition(self, transition_id, transition_code, transition: object = None): """ Return C++ code used to pass a transition, including the corresponding function call. Tracks which transition has been executed and optionally its return value. May also inject a delay, if `post_transition_delay_us` is set. """ ret = 'ptalog.passTransition({:d});\n'.format(transition_id) ret += 'ptalog.startTransition();\n' if self.log_return_values and transition and len(transition.return_value_handlers): ret += 'transition_return_value = {}\n'.format(transition_code) ret += 'ptalog.logReturn(transition_return_value);\n' else: ret += '{}\n'.format(transition_code) if self.post_transition_delay_us: ret += 'arch.delay_us({});\n'.format(self.post_transition_delay_us) ret += 'ptalog.stopTransition();\n' return ret def stop_run(self, num_traces = 0): return 'ptalog.dump({:d});\n'.format(num_traces) def stop_benchmark(self): return '' def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value): if log_data_target['parameter'][parameter_name] is None: log_data_target['parameter'][parameter_name] = list() log_data_target['parameter'][parameter_name].append(parameter_value) def parser_cb(self, line): #print('[HARNESS] got line {}'.format(line)) if re.match(r'\[PTA\] benchmark start, id=(\S+)', line): if self.repeat > 0 and self.repetitions == self.repeat: self.done = True self.synced = False print('[HARNESS] done') return self.synced = True self.repetitions += 1 print('[HARNESS] synced, {}/{}'.format(self.repetitions, self.repeat)) if self.synced: res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line) if res: self.trace_id = int(res.group(1)) self.trace_length = int(res.group(2)) self.current_transition_in_trace = 0 #print('[HARNESS] trace {:d} contains {:d} transitions. Expecting {:d} transitions.'.format(self.trace_id, self.trace_length, len(self.traces[self.trace_id]['trace']) // 2)) if self.log_return_values: res = re.match(r'\[PTA\] transition=(\S+) return=(\S+)', line) else: res = re.match(r'\[PTA\] transition=(\S+)', line) if res: transition_id = int(res.group(1)) # self.traces contains transitions and states, UART output only contains transitions -> use index * 2 try: log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2] except IndexError: transition_name = None if self.pta: transition_name = self.pta.transitions[transition_id].name print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name)) print(' Offending line: {}'.format(line)) return if log_data_target['isa'] != 'transition': raise RuntimeError('Log mismatch: Expected transition, got {:s}'.format(log_data_target['isa'])) if self.pta: transition = self.pta.transitions[transition_id] if transition.name != log_data_target['name']: raise RuntimeError('Log mismatch: Expected transition {:s}, got transition {:s}'.format(log_data_target['name'], transition.name)) if self.log_return_values and len(transition.return_value_handlers): for handler in transition.return_value_handlers: if 'parameter' in handler: parameter_value = return_value = int(res.group(2)) if 'return_values' not in log_data_target: log_data_target['return_values'] = list() log_data_target['return_values'].append(return_value) if 'formula' in handler: parameter_value = handler['formula'].eval(return_value) self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value) for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]: self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value) if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])): for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]): self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value) if preceding_log_data_target['name'] == handler['apply_from']: break self.current_transition_in_trace += 1 class OnboardTimerHarness(TransitionHarness): """TODO Additional parameters / changes from TransitionHarness: :param traces: Each trace element (`.traces[*]['trace'][*]`) additionally contains the dict `offline_aggregates` with the member `duration`. It contains a list of durations (in us) of the corresponding state/transition for each benchmark iteration. I.e. `.traces[*]['trace'][*]['offline_aggregates']['duration'] = [..., ...]` """ def __init__(self, counter_limits, **kwargs): super().__init__(**kwargs) self.trace_length = 0 self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow = counter_limits def copy(self): new_harness = __class__((self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow), gpio_pin = self.gpio_pin, pta = self.pta, log_return_values = self.log_return_values, repeat = self.repeat) new_harness.traces = self.traces.copy() new_harness.trace_id = self.trace_id return new_harness def global_code(self): ret = '#include "driver/counter.h"\n' ret += '#define PTALOG_TIMING\n' ret += super().global_code() return ret def start_benchmark(self, benchmark_id = 0): ret = 'counter.start();\n' ret += 'counter.stop();\n' ret += 'ptalog.passNop(counter);\n' ret += super().start_benchmark(benchmark_id) return ret def pass_transition(self, transition_id, transition_code, transition: object = None): ret = 'ptalog.passTransition({:d});\n'.format(transition_id) ret += 'ptalog.startTransition();\n' ret += 'counter.start();\n' if self.log_return_values and transition and len(transition.return_value_handlers): ret += 'transition_return_value = {}\n'.format(transition_code) else: ret += '{}\n'.format(transition_code) ret += 'counter.stop();\n' if self.log_return_values and transition and len(transition.return_value_handlers): ret += 'ptalog.logReturn(transition_return_value);\n' ret += 'ptalog.stopTransition(counter);\n' return ret def _append_nondeterministic_parameter_value(self, log_data_target, parameter_name, parameter_value): if log_data_target['parameter'][parameter_name] is None: log_data_target['parameter'][parameter_name] = list() log_data_target['parameter'][parameter_name].append(parameter_value) def parser_cb(self, line): #print('[HARNESS] got line {}'.format(line)) if re.match(r'\[PTA\] benchmark start, id=(\S+)', line): if self.repeat > 0 and self.repetitions == self.repeat: self.done = True self.synced = False print('[HARNESS] done') return self.synced = True self.repetitions += 1 print('[HARNESS] synced, {}/{}'.format(self.repetitions, self.repeat)) if self.synced: res = re.match(r'\[PTA\] trace=(\S+) count=(\S+)', line) if res: self.trace_id = int(res.group(1)) self.trace_length = int(res.group(2)) self.current_transition_in_trace = 0 #print('[HARNESS] trace {:d} contains {:d} transitions. Expecting {:d} transitions.'.format(self.trace_id, self.trace_length, len(self.traces[self.trace_id]['trace']) // 2)) if self.log_return_values: res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+) return=(\S+)', line) else: res = re.match(r'\[PTA\] transition=(\S+) cycles=(\S+)/(\S+)', line) if res: transition_id = int(res.group(1)) cycles = int(res.group(2)) overflow = int(res.group(3)) if overflow >= self.counter_max_overflow: raise RuntimeError('Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d})'.format(cycles, overflow, 0, self.trace_id, self.current_transition_in_trace, transition_id)) duration_us = cycles * self.one_cycle_in_us + overflow * self.one_overflow_in_us # TODO subtract 'nop' cycles # self.traces contains transitions and states, UART output only contains transitions -> use index * 2 try: log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2] except IndexError: transition_name = None if self.pta: transition_name = self.pta.transitions[transition_id].name print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name)) print(' Offending line: {}'.format(line)) return if log_data_target['isa'] != 'transition': raise RuntimeError('Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition, got {:s}'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, log_data_target['isa'])) if self.pta: transition = self.pta.transitions[transition_id] if transition.name != log_data_target['name']: raise RuntimeError('Log mismatch in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}): Expected transition {:s}, got transition {:s}'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, log_data_target['name'], transition.name)) if self.log_return_values and len(transition.return_value_handlers): for handler in transition.return_value_handlers: if 'parameter' in handler: parameter_value = return_value = int(res.group(4)) if 'return_values' not in log_data_target: log_data_target['return_values'] = list() log_data_target['return_values'].append(return_value) if 'formula' in handler: parameter_value = handler['formula'].eval(return_value) self._append_nondeterministic_parameter_value(log_data_target, handler['parameter'], parameter_value) for following_log_data_target in self.traces[self.trace_id]['trace'][(self.current_transition_in_trace * 2 + 1) :]: self._append_nondeterministic_parameter_value(following_log_data_target, handler['parameter'], parameter_value) if 'apply_from' in handler and any(map(lambda x: x['name'] == handler['apply_from'], self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2 + 1)])): for preceding_log_data_target in reversed(self.traces[self.trace_id]['trace'][: (self.current_transition_in_trace * 2)]): self._append_nondeterministic_parameter_value(preceding_log_data_target, handler['parameter'], parameter_value) if preceding_log_data_target['name'] == handler['apply_from']: break if 'offline_aggregates' not in log_data_target: log_data_target['offline_aggregates'] = { 'duration' : list() } log_data_target['offline_aggregates']['duration'].append(duration_us) self.current_transition_in_trace += 1