#!/usr/bin/env python3 import csv import io import numpy as np import struct import xml.etree.ElementTree as ET from dfatool.loader.generic import ExternalTimerSync class KeysightCSV: """Simple loader for Keysight CSV data, as exported by the windows software.""" def __init__(self): """Create a new KeysightCSV object.""" pass def load_data(self, filename: str): """ Load log data from filename, return timestamps and currents. Returns two one-dimensional NumPy arrays: timestamps and corresponding currents. """ with open(filename) as f: for i, _ in enumerate(f): pass timestamps = np.ndarray((i - 3), dtype=float) currents = np.ndarray((i - 3), dtype=float) # basically seek back to start with open(filename) as f: for _ in range(4): next(f) reader = csv.reader(f, delimiter=",") for i, row in enumerate(reader): timestamps[i] = float(row[0]) currents[i] = float(row[2]) * -1 return timestamps, currents class DLogChannel: def __init__(self, desc_tuple): self.slot = desc_tuple[0] self.smu = desc_tuple[1] self.unit = desc_tuple[2] self.data = None def __repr__(self): return f"""""" class DLog(ExternalTimerSync): """Loader for DLog files generated by Keysight power analyzers.""" def __init__( self, voltage: float, state_duration: int, with_traces=False, skip_duration=None, limit_duration=None, ): """ Create a new DLog object :param voltage: Voltage in V :type voltage: float :param state_duration: Expected state duration in ms. Used to detect and ignore UART transmissions in captured energy data. :type state_duration: int :param with_traces: Provide traces and timestamps, default false :type with_traces: bool :param skip_duration: Ignore the first `skip_duration` seconds, default None (ignore nothing) :type skip_duration: float :param limit_duration: Ignore everything after `limit_duration` seconds, default none (ignore nothing) :type limit_duration: float """ self.voltage = voltage self.state_duration = state_duration self.with_traces = with_traces self.skip_duration = skip_duration self.limit_duration = limit_duration self.errors = list() self.sync_min_duration = 0.7 self.sync_max_duration = 1.3 self.sync_min_low_count = 3 self.sync_min_high_count = 3 # TODO auto-detect self.sync_power = 10e-3 def load_data(self, content): lines = [] line = "" with io.BytesIO(content) as f: while line != "\n": line = f.readline().decode() lines.append(line) xml_header = "".join(lines) raw_header = f.read(8) data_offset = f.tell() raw_data = f.read() xml_header = xml_header.replace("1ua>", "X1ua>") xml_header = xml_header.replace("2ua>", "X2ua>") dlog = ET.fromstring(xml_header) channels = [] for channel in dlog.findall("channel"): channel_id = int(channel.get("id")) sense_curr = channel.find("sense_curr").text sense_volt = channel.find("sense_volt").text model = channel.find("ident").find("model").text if sense_volt == "1": channels.append((channel_id, model, "V")) if sense_curr == "1": channels.append((channel_id, model, "A")) num_channels = len(channels) self.channels = list(map(DLogChannel, channels)) self.interval = float(dlog.find("frame").find("tint").text) self.sense_minmax = int(dlog.find("frame").find("sense_minmax").text) self.planned_duration = int(dlog.find("frame").find("time").text) self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels)) if self.sense_minmax: raise RuntimeError( "DLog files with 'Log Min/Max' enabled are not supported yet" ) self.timestamps = np.linspace( 0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels)) ) if ( self.skip_duration is not None and self.observed_duration >= self.skip_duration ): start_offset = 0 for i, ts in enumerate(self.timestamps): if ts >= self.skip_duration: start_offset = i break self.timestamps = self.timestamps[start_offset:] raw_data = raw_data[start_offset * 4 * num_channels :] if ( self.limit_duration is not None and self.observed_duration > self.limit_duration ): stop_offset = len(self.timestamps) - 1 for i, ts in enumerate(self.timestamps): if ts > self.limit_duration: stop_offset = i break self.timestamps = self.timestamps[:stop_offset] self.observed_duration = self.timestamps[-1] raw_data = raw_data[: stop_offset * 4 * num_channels] self.data = np.ndarray( shape=(num_channels, int(len(raw_data) / (4 * num_channels))), dtype=np.float32, ) iterator = struct.iter_unpack(">f", raw_data) channel_offset = 0 measurement_offset = 0 for value in iterator: if value[0] < -1e6 or value[0] > 1e6: print( f"Invalid data value {value[0]} at channel {channel_offset}, measurement {measurement_offset}. Replacing with 0." ) self.data[channel_offset, measurement_offset] = 0 else: self.data[channel_offset, measurement_offset] = value[0] if channel_offset + 1 == num_channels: channel_offset = 0 measurement_offset += 1 else: channel_offset += 1 # An SMU has four slots self.slots = [dict(), dict(), dict(), dict()] for i, channel in enumerate(self.channels): channel.data = self.data[i] self.slots[channel.slot - 1][channel.unit] = channel assert "A" in self.slots[0] self.data = self.slots[0]["A"].data * self.voltage def observed_duration_equals_expectation(self): return int(self.observed_duration) == self.planned_duration