#!/usr/bin/env python3 import itertools import logging import numpy as np import os from collections import OrderedDict from copy import deepcopy from multiprocessing import Pool import dfatool.functions as df from .utils import remove_index_from_tuple, is_numeric from .utils import filter_aggregate_by_param, partition_by_param logger = logging.getLogger(__name__) def distinct_param_values(param_tuples): """ Return the distinct values of each parameter in param_tuples. E.g. if param_tuples contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3), this function returns [[1, 0], [1, 2, 3]]. Note that this function deliberately also consider None (uninitialized parameter with unknown value) as a distinct value. Benchmarks and drivers must ensure that a parameter is only None when its value is not important yet, e.g. a packet length parameter must only be None when write() or similar has not been called yet. Other parameters should always be initialized when leaving UNINITIALIZED. """ distinct_values = [OrderedDict() for i in range(len(param_tuples[0]))] for param_tuple in param_tuples: for i in range(len(param_tuple)): distinct_values[i][param_tuple[i]] = True # Convert sets to lists distinct_values = list(map(lambda x: list(x.keys()), distinct_values)) return distinct_values def _depends_on_param(corr_param, std_param, std_lut): # if self.use_corrcoef: if False: return corr_param > 0.1 elif std_param == 0: # In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows. # This means that the variation of param does not affect the model quality -> no influence return False return std_lut / std_param < 0.5 def _std_by_param(n_by_param, all_param_values, param_index): """ Calculate standard deviations for a static model where all parameters but `param_index` are constant. :param n_by_param: measurements of a specific model attribute partitioned by parameter values. Example: `{(0, 2): [2], (0, 4): [4], (0, 6): [6]}` :param all_param_values: distinct values of each parameter. E.g. for two parameters, the first being None, FOO, or BAR, and the second being 1, 2, 3, or 4, the argument is `[[None, 'FOO', 'BAR'], [1, 2, 3, 4]]`. :param param_index: index of variable parameter :returns: (stddev matrix, mean stddev, LUT matrix) *stddev matrix* is an ((number of parameters)-1)-dimensional matrix giving the standard deviation of each individual parameter variation partition. E.g. for param_index == 2 and 4 parameters, stddev matrix[a, b, d] is the stddev of measurements with param0 == all_param_values[0][a], param1 == all_param_values[1][b], param2 variable, and param3 == all_param_values[3][d]. *mean stddev* is the mean standard deviation of all measurements where parameter `param_index` is dynamic and all other parameters are fixed. E.g., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then this function returns the mean of the standard deviations of (a=1, b=*, c=1), (a=1, b=*, c=2), and so on. *LUT matrix* is an ((number of parameters)-1)-dimensional matrix giving the mean standard deviation of individual partitions with entirely constant parameters. E.g. for param_index == 2 and 4 parameters, LUT matrix[a][b][d] is the mean of stddev(param0 -> a, param1 -> b, param2 -> first distinct value, param3 -> d), stddev(param0 -> a, param1 -> b, param2 -> second distinct value, param3 -> d), and so on. """ param_values = list(remove_index_from_tuple(all_param_values, param_index)) info_shape = tuple(map(len, param_values)) # We will calculate the mean over the entire matrix later on. As we cannot # guarantee that each entry will be filled in this loop (e.g. transitions # whose arguments are combined using 'zip' rather than 'cartesian' always # have missing parameter combinations), we pre-fill it with NaN and use # np.nanmean to skip those when calculating the mean. stddev_matrix = np.full(info_shape, np.nan) lut_matrix = np.full(info_shape, np.nan) for param_value in itertools.product(*param_values): param_partition = list() std_list = list() for k, v in n_by_param.items(): if (*k[:param_index], *k[param_index + 1 :]) == param_value: param_partition.extend(v) std_list.append(np.std(v)) if len(param_partition) > 1: matrix_index = list(range(len(param_value))) for i in range(len(param_value)): matrix_index[i] = param_values[i].index(param_value[i]) matrix_index = tuple(matrix_index) stddev_matrix[matrix_index] = np.std(param_partition) lut_matrix[matrix_index] = np.mean(std_list) # This can (and will) happen in normal operation, e.g. when a transition's # arguments are combined using 'zip' rather than 'cartesian'. # elif len(param_partition) == 1: # vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value)) # else: # vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value)) if np.all(np.isnan(stddev_matrix)): logger.warning( f"parameter #{param_index} has no data partitions. All stddev_matrix entries are NaN." ) return stddev_matrix, 0.0, lut_matrix return ( stddev_matrix, np.nanmean(stddev_matrix), lut_matrix, ) # np.mean([np.std(partition) for partition in partitions]) def _corr_by_param(attribute_data, param_values, param_index): """ Return correlation coefficient (`np.corrcoef`) of `attribute_data` <-> `param_values[param_index]` A correlation coefficient close to 1 indicates that the attribute likely depends on the value of the parameter denoted by `param_index`, if it is nearly 0, it likely does not depend on it. If any value of `param_index` is not numeric (i.e., can not be parsed as float), this function returns 0. :param attribute_data: list or 1-D numpy array of measurements :param param_values: list of parameter values :param param_index: index of parameter in `by_name[*]['param']` """ if _all_params_are_numeric(param_values, param_index): param_values = np.array(list((map(lambda x: x[param_index], param_values)))) try: return np.corrcoef(attribute_data, param_values)[0, 1] except FloatingPointError: # Typically happens when all parameter values are identical. # Building a correlation coefficient is pointless in this case # -> assume no correlation return 0.0 except ValueError: logger.error( "ValueError in _corr_by_param(param_index={})".format(param_index) ) logger.error( "while executing np.corrcoef({}, {}))".format( attribute_data, param_values ) ) raise else: return 0.0 def _compute_param_statistics( data, param_names, param_tuples, arg_count=None, use_corrcoef=False, codependent_params=list(), ): """ Compute standard deviation and correlation coefficient on parameterized data partitions. It is strongly recommended to vary all parameter values evenly. For instance, given two parameters, providing only the combinations (1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results. It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values) arguments: data -- measurement data (ground truth). Must be a list or 1-D numpy array. param_names -- list of parameter names param_tuples -- list of parameter values corresponding to the order in param_names arg_count -- dict providing the number of functions args ("local parameters") for each function. use_corrcoef -- use correlation coefficient instead of stddev heuristic for parameter detection :returns: a dict with the following content: std_static -- static parameter-unaware model error: stddev of data std_param_lut -- static parameter-aware model error: mean stddev of data[*] std_by_param -- static parameter-aware model error ignoring a single parameter. dictionary with one key per parameter. The value is the mean stddev of measurements where all other parameters are fixed and the parameter in question is variable. E.g. std_by_param['X'] is the mean stddev of n_by_param[(X=*, Y=..., Z=...)]. std_by_arg -- same, but ignoring a single function argument Only set if arg_count is non-zero, empty list otherwise. corr_by_param -- correlation coefficient corr_by_arg -- same, but ignoring a single function argument Only set if arg_count is non-zero, empty list otherwise. depends_on_param -- dict(parameter_name -> Bool). True if /attribute/ behaviour probably depends on /parameter_name/ depends_on_arg -- list(bool). Same, but for function arguments, if any. """ ret = dict() ret["by_param"] = by_param = partition_by_param(data, param_tuples) ret["use_corrcoef"] = use_corrcoef ret["_parameter_names"] = param_names ret["distinct_values_by_param_index"] = distinct_param_values(param_tuples) ret["distinct_values_by_param_name"] = dict() for i, param in enumerate(param_names): ret["distinct_values_by_param_name"][param] = ret[ "distinct_values_by_param_index" ][i] ret["std_static"] = np.std(data) # TODO Gewichtung? Parameterkombinationen mit wenig verfügbaren Messdaten werden # genau so behandelt wie welchemit vielen verfügbaren Messdaten, in # std_static haben sie dagegen weniger Gewicht ret["std_param_lut"] = np.mean([np.std(v) for v in by_param.values()]) ret["std_by_param"] = dict() ret["std_by_param_values"] = dict() ret["lut_by_param_values"] = dict() ret["std_by_arg"] = list() ret["std_by_arg_values"] = list() ret["lut_by_arg_values"] = list() ret["corr_by_param"] = dict() ret["corr_by_arg"] = list() ret["_depends_on_param"] = dict() ret["_depends_on_arg"] = list() np.seterr("raise") for param_idx, param in enumerate(param_names): if param_idx < len(codependent_params) and codependent_params[param_idx]: by_param = partition_by_param( data, param_tuples, ignore_parameters=codependent_params[param_idx] ) distinct_values = ret["distinct_values_by_param_index"].copy() for codependent_param_index in codependent_params[param_idx]: distinct_values[codependent_param_index] = [None] else: by_param = ret["by_param"] distinct_values = ret["distinct_values_by_param_index"] std_matrix, mean_std, lut_matrix = _std_by_param( by_param, distinct_values, param_idx ) ret["std_by_param"][param] = mean_std ret["std_by_param_values"][param] = std_matrix ret["lut_by_param_values"][param] = lut_matrix ret["corr_by_param"][param] = _corr_by_param(data, param_tuples, param_idx) ret["_depends_on_param"][param] = _depends_on_param( ret["corr_by_param"][param], ret["std_by_param"][param], ret["std_param_lut"], ) if arg_count: for arg_index in range(arg_count): param_idx = len(param_names) + arg_index if param_idx < len(codependent_params) and codependent_params[param_idx]: by_param = partition_by_param( data, param_tuples, ignore_parameters=codependent_params[param_idx] ) distinct_values = ret["distinct_values_by_param_index"].copy() for codependent_param_index in codependent_params[param_idx]: distinct_values[codependent_param_index] = [None] else: by_param = ret["by_param"] distinct_values = ret["distinct_values_by_param_index"] std_matrix, mean_std, lut_matrix = _std_by_param( by_param, distinct_values, param_idx, ) ret["std_by_arg"].append(mean_std) ret["std_by_arg_values"].append(std_matrix) ret["lut_by_arg_values"].append(lut_matrix) ret["corr_by_arg"].append(_corr_by_param(data, param_tuples, param_idx)) if False: ret["_depends_on_arg"].append(ret["corr_by_arg"][arg_index] > 0.1) elif ret["std_by_arg"][arg_index] == 0: # In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows. # This means that the variation of arg does not affect the model quality -> no influence ret["_depends_on_arg"].append(False) else: ret["_depends_on_arg"].append( ret["std_param_lut"] / ret["std_by_arg"][arg_index] < 0.5 ) return ret def codependent_param_dict(param_values): lut = [dict() for i in param_values[0]] for param_index in range(len(param_values[0])): uniqs = set(map(lambda param_tuple: param_tuple[param_index], param_values)) for uniq_index, uniq in enumerate(uniqs): lut[param_index][uniq] = uniq_index normed_param_values = list() for param_tuple in param_values: normed_param_values.append( tuple(map(lambda ipv: lut[ipv[0]][ipv[1]], enumerate(param_tuple))) ) normed_param_values = np.array(normed_param_values) std_by_param = list() std_by_param_pair = dict() ret = dict() for param1_i in range(len(lut)): std_by_param.append(np.std(normed_param_values[:, param1_i])) for param2_i in range(param1_i + 1, len(lut)): stds = list() for param1_value in range(len(lut[param1_i])): tt = normed_param_values[:, param1_i] == param1_value values = normed_param_values[tt, param2_i] if len(values) <= 1: stds.append(0.0) else: stds.append(np.std(values)) std_by_param_pair[(param1_i, param2_i)] = np.mean(stds) for param1_i in range(len(lut)): for param2_i in range(param1_i + 1, len(lut)): if std_by_param[param1_i] > 0 and std_by_param[param2_i] > 0: if std_by_param_pair[(param1_i, param2_i)] == 0: ret[(param1_i, param2_i)] = True return ret def _compute_param_statistics_parallel(arg): return {"key": arg["key"], "dict": _compute_param_statistics(*arg["args"])} def _all_params_are_numeric(data, param_idx): """Check if all `data['param'][*][param_idx]` elements are numeric, as reported by `utils.is_numeric`.""" param_values = list(map(lambda x: x[param_idx], data)) if len(list(filter(is_numeric, param_values))) == len(param_values): return True return False class ParallelParamStats: def __init__(self): self.queue = list() self.map = dict() def enqueue(self, key, attr): self.queue.append( { "key": key, "args": [ attr.data, attr.param_names, attr.param_values, attr.arg_count, False, attr.codependent_params, ], } ) self.map[key] = attr def compute(self): """ Fit functions on previously enqueue data. Fitting is one in parallel with one process per core. Results can be accessed using the public ParallelParamFit.results object. """ with Pool() as pool: results = pool.map(_compute_param_statistics_parallel, self.queue) for result in results: self.map[result["key"]].by_param = result["dict"].pop("by_param") self.map[result["key"]].stats = ParamStats(result["dict"]) class ParamStats: def __init__(self, data): self.__dict__.update(data) @classmethod def compute_for_attr(cls, attr, use_corrcoef=False): res = _compute_param_statistics( attr.data, attr.param_names, attr.param_values, arg_count=attr.arg_count, use_corrcoef=use_corrcoef, codependent_params=attr.codependent_params, ) attr.by_param = res.pop("by_param") attr.stats = cls(res) def can_be_fitted(self) -> bool: """ Return whether a sufficient amount of distinct numeric parameter values is available, allowing a parameter-aware model to be generated. """ for param in self._parameter_names: if ( len( list( filter( lambda n: is_numeric(n), self.distinct_values_by_param_name[param], ) ) ) > 2 ): logger.debug( "can be fitted for param {} on {}".format( param, list( filter( lambda n: is_numeric(n), self.distinct_values_by_param_name[param], ) ), ) ) return True return False def _generic_param_independence_ratio(self): """ Return the heuristic ratio of parameter independence. This is not supported if the correlation coefficient is used. A value close to 1 means no influence, a value close to 0 means high probability of influence. """ if self.use_corrcoef: # not supported raise ValueError if self.std_static == 0: return 0 return self.std_param_lut / self.std_static def generic_param_dependence_ratio(self): """ Return the heuristic ratio of parameter dependence. This is not supported if the correlation coefficient is used. A value close to 0 means no influence, a value close to 1 means high probability of influence. """ return 1 - self._generic_param_independence_ratio() def _param_independence_ratio(self, param: str) -> float: """ Return the heuristic ratio of parameter independence for param. A value close to 1 means no influence, a value close to 0 means high probability of influence. """ if self.use_corrcoef: return 1 - np.abs(self.corr_by_param[param]) if self.std_by_param[param] == 0: # if self.std_param_lut != 0: # raise RuntimeError(f"wat: std_by_param[{param}]==0, but std_param_lut=={self.std_param_lut} ≠ 0") # In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows. # This means that the variation of param does not affect the model quality -> no influence, return 1 return 1.0 return self.std_param_lut / self.std_by_param[param] def param_dependence_ratio(self, param: str) -> float: """ Return the heuristic ratio of parameter dependence for param. A value close to 0 means no influence, a value close to 1 means high probability of influence. :param param: parameter name :returns: parameter dependence (float between 0 == no influence and 1 == high probability of influence) """ return 1 - self._param_independence_ratio(param) def _arg_independence_ratio(self, arg_index): if self.use_corrcoef: return 1 - np.abs(self.corr_by_arg[arg_index]) if self.std_by_arg[arg_index] == 0: if self.std_param_lut != 0: raise RuntimeError( f"wat: std_by_arg[{arg_index}]==0, but std_param_lut=={self.std_param_lut} ≠ 0" ) # In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows. # This means that the variation of arg does not affect the model quality -> no influence, return 1 return 1 return self.std_param_lut / self.std_by_arg[arg_index] def arg_dependence_ratio(self, arg_index: int) -> float: return 1 - self._arg_independence_ratio(arg_index) # This heuristic is very similar to the "function is not much better than # median" checks in get_fitted. So far, doing it here as well is mostly # a performance and not an algorithm quality decision. # --df, 2018-04-18 def depends_on_param(self, param): """Return whether attribute of state_or_trans depens on param.""" return self._depends_on_param[param] # See notes on depends_on_param def depends_on_arg(self, arg_index): """Return whether attribute of state_or_trans depens on arg_index.""" return self._depends_on_arg[arg_index] class ModelAttribute: """ A ModelAttribute instance handles a single model attribute, e.g. TX state power or something() function call duration, and corresponding benchmark data. It provides three models: - a static model (`mean`, `median`) as lower bound of model accuracy - a LUT model (`by_param`) as upper bound of model accuracy - a fitted model (`model_function`, a `ModelFunction` instance) """ def __init__( self, name, attr, data, param_values, param_names, arg_count=0, codependent_param=dict(), ): # Data for model generation self.data = np.array(data) # Meta data self.name = name self.attr = attr self.param_values = param_values self.param_names = sorted(param_names) self.arg_count = arg_count self.log_param_names = self.param_names + list( map(lambda i: f"arg{i}", range(arg_count)) ) # Co-dependent parameters. If (param1_index, param2_index) in codependent_param, they are codependent. # In this case, only one of them must be used for parameter-dependent model attribute detection and modeling self.codependent_param_pair = codependent_param self.codependent_params = [list() for x in self.log_param_names] self.ignore_param = dict() # Static model used as lower bound of model accuracy self.mean = np.mean(data) self.median = np.median(data) # LUT model used as upper bound of model accuracy self.by_param = None # set via ParallelParamStats # Split (decision tree) information self.split = None # param model override self.function_override = None # The best model we have. May be Static, Split, or Param (and later perhaps Substate) self.model_function = None self._check_codependent_param() def __repr__(self): mean = np.mean(self.data) return f"ModelAttribute<{self.name}, {self.attr}, mean={mean}>" def to_json(self): ret = { "paramNames": self.param_names, "argCount": self.arg_count, "modelFunction": self.model_function.to_json(), } return ret def to_dref(self, unit=None): ret = {"mean": (self.mean, unit), "median": (self.median, unit)} return ret @staticmethod def from_json(cls, name, attr, data): param_names = data["paramNames"] arg_count = data["argCount"] self = cls(name, attr, None, None, param_names, arg_count) self.model_function = df.ModelFunction.from_json(data["modelFunction"]) return self def _check_codependent_param(self): for ( param1_index, param2_index, ), is_codependent in self.codependent_param_pair.items(): if not is_codependent: continue param1_values = map(lambda pv: pv[param1_index], self.param_values) param1_numeric_count = sum(map(is_numeric, param1_values)) param2_values = map(lambda pv: pv[param2_index], self.param_values) param2_numeric_count = sum(map(is_numeric, param2_values)) if param1_numeric_count >= param2_numeric_count: self.ignore_param[param2_index] = True self.codependent_params[param1_index].append(param2_index) logger.info( f"{self.name} {self.attr}: parameters ({self.log_param_names[param1_index]}, {self.log_param_names[param2_index]}) are codependent. Ignoring {self.log_param_names[param2_index]}" ) else: self.ignore_param[param1_index] = True self.codependent_params[param2_index].append(param1_index) logger.info( f"{self.name} {self.attr}: parameters ({self.log_param_names[param1_index]}, {self.log_param_names[param2_index]}) are codependent. Ignoring {self.log_param_names[param1_index]}" ) def get_static(self, use_mean=False): if use_mean: return self.mean return self.median def get_lut(self, param, use_mean=False): if use_mean: return np.mean(self.by_param[param]) return np.median(self.by_param[param]) def build_dtree(self): split_param_index = self.get_split_param_index() if split_param_index is None: return distinct_values = self.stats.distinct_values_by_param_index[split_param_index] tt1 = list( map( lambda i: self.param_values[i][split_param_index] == distinct_values[0], range(len(self.param_values)), ) ) tt2 = np.invert(tt1) pv1 = list() pv2 = list() for i, param_tuple in enumerate(self.param_values): if tt1[i]: pv1.append(param_tuple) else: pv2.append(param_tuple) # print( # f">>> split {self.name} {self.attr} by param #{split_param_index}" # ) child1 = ModelAttribute( self.name, self.attr, self.data[tt1], pv1, self.param_names, self.arg_count, codependent_param_dict(pv1), ) child2 = ModelAttribute( self.name, self.attr, self.data[tt2], pv2, self.param_names, self.arg_count, codependent_param_dict(pv2), ) ParamStats.compute_for_attr(child1) ParamStats.compute_for_attr(child2) child1.build_dtree() child2.build_dtree() self.split = ( split_param_index, {distinct_values[0]: child1, distinct_values[1]: child2}, ) # print( # f"<<< split {self.name} {self.attr} by param #{split_param_index}" # ) # None -> kein split notwendig # andernfalls: Parameter-Index, anhand dessen eine Decision Tree-Ebene aufgespannt wird # (Kinder sind wiederum ModelAttributes, in denen dieser Parameter konstant ist) def get_split_param_index(self): if not self.param_names: return None std_by_param = list() for param_index, param_name in enumerate(self.param_names): distinct_values = self.stats.distinct_values_by_param_index[param_index] if ( self.stats.depends_on_param(param_name) and len(distinct_values) == 2 and not param_index in self.ignore_param ): val1 = list( map( lambda i: self.param_values[i][param_index] == distinct_values[0], range(len(self.param_values)), ) ) val2 = np.invert(val1) val1_std = np.std(self.data[val1]) val2_std = np.std(self.data[val2]) std_by_param.append(np.mean([val1_std, val2_std])) else: std_by_param.append(np.inf) for arg_index in range(self.arg_count): distinct_values = self.stats.distinct_values_by_param_index[ len(self.param_names) + arg_index ] if ( self.stats.depends_on_arg(arg_index) and len(distinct_values) == 2 and not len(self.param_names) + arg_index in self.ignore_param ): val1 = list( map( lambda i: self.param_values[i][ len(self.param_names) + arg_index ] == distinct_values[0], range(len(self.param_values)), ) ) val2 = np.invert(val1) val1_std = np.std(self.data[val1]) val2_std = np.std(self.data[val2]) std_by_param.append(np.mean([val1_std, val2_std])) else: std_by_param.append(np.inf) split_param_index = np.argmin(std_by_param) split_std = std_by_param[split_param_index] if split_std == np.inf: return None return split_param_index def get_data_for_paramfit(self, safe_functions_enabled=False): if self.split: return self.get_data_for_paramfit_split( safe_functions_enabled=safe_functions_enabled ) else: return self.get_data_for_paramfit_this( safe_functions_enabled=safe_functions_enabled ) def get_data_for_paramfit_split(self, safe_functions_enabled=False): split_param_index, child_by_param_value = self.split ret = list() for param_value, child in child_by_param_value.items(): child_ret = child.get_data_for_paramfit( safe_functions_enabled=safe_functions_enabled ) for key, param, args, kwargs in child_ret: ret.append((key[:2] + (param_value,) + key[2:], param, args, kwargs)) return ret def _by_param_for_index(self, param_index): if not self.codependent_params[param_index]: return self.by_param new_param_values = list() for param_tuple in self.param_values: for i in self.codependent_params[param_index]: param_tuple[i] = None new_param_values.append(param_tuple) return partition_by_param(self.data, new_param_values) def get_data_for_paramfit_this(self, safe_functions_enabled=False): ret = list() for param_index, param_name in enumerate(self.param_names): if ( self.stats.depends_on_param(param_name) and not param_index in self.ignore_param ): by_param = self._by_param_for_index(param_index) ret.append( ( (self.name, self.attr), param_name, (by_param, param_index, safe_functions_enabled), dict(), ) ) if self.arg_count: for arg_index in range(self.arg_count): param_index = len(self.param_names) + arg_index if ( self.stats.depends_on_arg(arg_index) and not param_index in self.ignore_param ): by_param = self._by_param_for_index(param_index) ret.append( ( (self.name, self.attr), arg_index, ( by_param, param_index, safe_functions_enabled, ), dict(), ) ) return ret def set_data_from_paramfit(self, paramfit, prefix=tuple()): if self.split: self.set_data_from_paramfit_split(paramfit, prefix) else: self.set_data_from_paramfit_this(paramfit, prefix) def set_data_from_paramfit_split(self, paramfit, prefix): split_param_index, child_by_param_value = self.split function_map = { "split_by": split_param_index, "child": dict(), "child_static": dict(), } function_child = dict() info_child = dict() for param_value, child in child_by_param_value.items(): child.set_data_from_paramfit(paramfit, prefix + (param_value,)) function_child[param_value] = child.model_function self.model_function = df.SplitFunction( self.median, split_param_index, function_child ) def set_data_from_paramfit_this(self, paramfit, prefix): fit_result = paramfit.get_result((self.name, self.attr) + prefix) self.model_function = df.StaticFunction(self.median) if self.function_override is not None: function_str = self.function_override x = df.AnalyticFunction( self.median, function_str, self.param_names, self.arg_count, fit_by_param=fit_result, ) x.fit(self.by_param) if x.fit_success: self.model_function = x elif os.getenv("DFATOOL_NO_PARAM"): pass elif len(fit_result.keys()): x = df.analytic.function_powerset( fit_result, self.param_names, self.arg_count ) x.value = self.median x.fit(self.by_param) if x.fit_success: self.model_function = x