import itertools import numpy as np from collections import OrderedDict from copy import deepcopy from multiprocessing import Pool from utils import remove_index_from_tuple, is_numeric, is_power_of_two from utils import filter_aggregate_by_param, by_name_to_by_param def distinct_param_values(by_name, state_or_tran): """ Return the distinct values of each parameter in by_name[state_or_tran]. E.g. if by_name[state_or_tran]['param'] contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3), this function returns [[1, 0], [1, 2, 3]]. Note that this function deliberately also consider None (uninitialized parameter with unknown value) as a distinct value. Benchmarks and drivers must ensure that a parameter is only None when its value is not important yet, e.g. a packet length parameter must only be None when write() or similar has not been called yet. Other parameters should always be initialized when leaving UNINITIALIZED. """ distinct_values = [OrderedDict() for i in range(len(by_name[state_or_tran]['param'][0]))] for param_tuple in by_name[state_or_tran]['param']: for i in range(len(param_tuple)): distinct_values[i][param_tuple[i]] = True # Convert sets to lists distinct_values = list(map(lambda x: list(x.keys()), distinct_values)) return distinct_values def _depends_on_param(corr_param, std_param, std_lut): #if self.use_corrcoef: if False: return corr_param > 0.1 elif std_param == 0: # In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows. # This means that the variation of param does not affect the model quality -> no influence return False return std_lut / std_param < 0.5 def _reduce_param_matrix(matrix: np.ndarray, parameter_names: list) -> list: """ :param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...) :param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc. :returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not affect (parameter)'s influence on (model attribute) -- it either always or never has an influence """ if np.all(matrix == True) or np.all(matrix == False): return list() # Diese Abbruchbedingung scheint noch nicht so schlau zu sein... # Mit wird zu viel rausgefiltert (z.B. auto_ack! -> max_retry_count in "bin/analyze-timing.py ../data/20190815_122531_nRF24_no-rx.json" nicht erkannt) # Ohne wird zu wenig rausgefiltert (auch ganz viele Abhängigkeiten erkannt, bei denen eine Parameter-Abhängigketi immer unabhängig vom Wert der anderen Parameter besteht) #if not is_power_of_two(np.count_nonzero(matrix)): # # cannot be reliably reduced to a list of parameters # return list() if np.count_nonzero(matrix) == 1: influential_parameters = list() for i, parameter_name in enumerate(parameter_names): if matrix.shape[i] > 1: influential_parameters.append(parameter_name) return influential_parameters for axis in range(matrix.ndim): candidate = _reduce_param_matrix(np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis)) if len(candidate): return candidate return list() def _codependent_parameters(param, lut_by_param_values, std_by_param_values): """ Return list of parameters which affect whether a parameter affects a model attribute or not. """ return list() safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y) ratio_by_value = safe_div(lut_by_param_values, std_by_param_values) err_mode = np.seterr('ignore') dep_by_value = ratio_by_value > 0.5 np.seterr(**err_mode) other_param_list = list(filter(lambda x: x != param, self._parameter_names)) influencer_parameters = _reduce_param_matrix(dep_by_value, other_param_list) return influencer_parameters def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False): u""" Calculate standard deviations for a static model where all parameters but `param_index` are constant. :param by_param: measurements sorted by key/transition name and parameter values :param all_param_values: distinct values of each parameter in `state_or_tran`. E.g. for two parameters, the first being None, FOO, or BAR, and the second being 1, 2, 3, or 4, the argument is `[[None, 'FOO', 'BAR'], [1, 2, 3, 4]]`. :param state_or_tran: state or transition name (-> by_param[(state_or_tran, *)]) :param attribute: model attribute, e.g. 'power' or 'duration' (-> by_param[(state_or_tran, *)][attribute]) :param param_index: index of variable parameter :returns: (stddev matrix, mean stddev, LUT matrix) *stddev matrix* is an ((number of parameters)-1)-dimensional matrix giving the standard deviation of each individual parameter variation partition. E.g. for param_index == 2 and 4 parameters, stddev matrix[a][b][d] is the stddev of measurements with param0 == all_param_values[0][a], param1 == all_param_values[1][b], param2 variable, and param3 == all_param_values[3][d]. *mean stddev* is the mean standard deviation of all measurements of `attribute` for `state_or_tran` where parameter `param_index` is dynamic and all other parameters are fixed. E.g., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then this function returns the mean of the standard deviations of (a=1, b=*, c=1), (a=1, b=*, c=2), and so on. *LUT matrix* is an ((number of parameters)-1)-dimensional matrix giving the mean standard deviation of individual partitions with entirely constant parameters. E.g. for param_index == 2 and 4 parameters, LUT matrix[a][b][d] is the mean of stddev(param0 -> a, param1 -> b, param2 -> first distinct value, param3 -> d), stddev(param0 -> a, param1 -> b, param2 -> second distinct value, param3 -> d), and so on. """ param_values = list(remove_index_from_tuple(all_param_values, param_index)) info_shape = tuple(map(len, param_values)) # We will calculate the mean over the entire matrix later on. As we cannot # guarantee that each entry will be filled in this loop (e.g. transitions # whose arguments are combined using 'zip' rather than 'cartesian' always # have missing parameter combinations), we pre-fill it with NaN and use # np.nanmean to skip those when calculating the mean. stddev_matrix = np.full(info_shape, np.nan) lut_matrix = np.full(info_shape, np.nan) for param_value in itertools.product(*param_values): param_partition = list() std_list = list() for k, v in by_param.items(): if k[0] == state_or_tran and (*k[1][:param_index], *k[1][param_index+1:]) == param_value: param_partition.extend(v[attribute]) std_list.append(np.std(v[attribute])) if len(param_partition) > 1: matrix_index = list(range(len(param_value))) for i in range(len(param_value)): matrix_index[i] = param_values[i].index(param_value[i]) matrix_index = tuple(matrix_index) stddev_matrix[matrix_index] = np.std(param_partition) lut_matrix[matrix_index] = np.mean(std_list) # This can (and will) happen in normal operation, e.g. when a transition's # arguments are combined using 'zip' rather than 'cartesian'. #elif len(param_partition) == 1: # vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value)) #else: # vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value)) if np.all(np.isnan(stddev_matrix)): print('[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index)) print('stddev_matrix = {}'.format(stddev_matrix)) return stddev_matrix, 0. return stddev_matrix, np.nanmean(stddev_matrix), lut_matrix #np.mean([np.std(partition) for partition in partitions]) def _corr_by_param(by_name, state_or_trans, attribute, param_index): """ Return correlation coefficient (`np.corrcoef`) of `by_name[state_or_trans][attribute][:]` <-> `by_name[state_or_trans]['param'][:][param_index]` A correlation coefficient close to 1 indicates that the attribute likely depends on the value of the parameter denoted by `param_index`, if it is nearly 0, it likely does not depend on it. If any value of `param_index` is not numeric (i.e., can not be parsed as float), this function returns 0. :param by_name: measurements partitioned by state/transition name :param state_or_trans: state or transition name :param attribute: model attribute :param param_index: index of parameter in `by_name[state_or_trans]['param']` """ if _all_params_are_numeric(by_name[state_or_trans], param_index): param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param'])))) try: return np.corrcoef(by_name[state_or_trans][attribute], param_values)[0, 1] except FloatingPointError: # Typically happens when all parameter values are identical. # Building a correlation coefficient is pointless in this case # -> assume no correlation return 0. except ValueError: print('[!] Exception in _corr_by_param(by_name, state_or_trans={}, attribute={}, param_index={})'.format(state_or_trans, attribute, param_index)) print('[!] while executing np.corrcoef(by_name[{}][{}]={}, {}))'.format(state_or_trans, attribute, by_name[state_or_trans][attribute], param_values)) raise else: return 0. def _compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, distinct_values, distinct_values_by_param_index, verbose = False): """ Compute standard deviation and correlation coefficient for various data partitions. It is strongly recommended to vary all parameter values evenly across partitions. For instance, given two parameters, providing only the combinations (1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results. It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values) :param by_name: ground truth partitioned by state/transition name. by_name[state_or_trans][attribute] must be a list or 1-D numpy array. by_name[state_or_trans]['param'] must be a list of parameter values corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the first ground truth element has the (lexically) first parameter set to 1, the second to 2 and the third to 3. :param by_param: ground truth partitioned by state/transition name and parameters. by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array. :param parameter_names: list of parameter names, must have the same order as the parameter values in by_param (lexical sorting is recommended). :param arg_count: dict providing the number of functions args ("local parameters") for each function. :param state_or_trans: state or transition name, e.g. 'send' or 'TX' :param attribute: model attribute, e.g. 'power' or 'duration' :param verbose: print warning if some parameter partitions are too small for fitting :returns: a dict with the following content: std_static -- static parameter-unaware model error: stddev of by_name[state_or_trans][attribute] std_param_lut -- static parameter-aware model error: mean stddev of by_param[(state_or_trans, *)][attribute] std_by_param -- static parameter-aware model error ignoring a single parameter. dictionary with one key per parameter. The value is the mean stddev of measurements where all other parameters are fixed and the parameter in question is variable. E.g. std_by_param['X'] is the mean stddev of by_param[(state_or_trans, (X=*, Y=..., Z=...))][attribute]. std_by_arg -- same, but ignoring a single function argument Only set if state_or_trans appears in arg_count, empty dict otherwise. corr_by_param -- correlation coefficient corr_by_arg -- same, but ignoring a single function argument Only set if state_or_trans appears in arg_count, empty dict otherwise. """ ret = { 'std_static' : np.std(by_name[state_or_trans][attribute]), 'std_param_lut' : np.mean([np.std(by_param[x][attribute]) for x in by_param.keys() if x[0] == state_or_trans]), 'std_by_param' : {}, 'std_by_param_values' : {}, 'lut_by_param_values' : {}, 'std_by_arg' : [], 'std_by_arg_values' : [], 'lut_by_arg_values' : [], 'corr_by_param' : {}, 'corr_by_arg' : [], 'depends_on_param' : {}, 'depends_on_arg' : [], 'param_data' : {}, } np.seterr('raise') for param_idx, param in enumerate(parameter_names): std_matrix, mean_std, lut_matrix = _std_by_param(by_param, distinct_values_by_param_index, state_or_trans, attribute, param_idx, verbose) ret['std_by_param'][param] = mean_std ret['std_by_param_values'][param] = std_matrix ret['lut_by_param_values'][param] = lut_matrix ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx) ret['depends_on_param'][param] = _depends_on_param(ret['corr_by_param'][param], ret['std_by_param'][param], ret['std_param_lut']) if ret['depends_on_param'][param]: ret['param_data'][param] = { 'codependent_parameters': _codependent_parameters(param, lut_matrix, std_matrix), 'depends_for_codependent_value': dict() } # calculate parameter dependence for individual values of codependent parameters codependent_param_values = list() for codependent_param in ret['param_data'][param]['codependent_parameters']: codependent_param_values.append(distinct_values[codependent_param]) for combi in itertools.product(*codependent_param_values): by_name_part = deepcopy(by_name) filter_list = list(zip(ret['param_data'][param]['codependent_parameters'], combi)) filter_aggregate_by_param(by_name_part, parameter_names, filter_list) by_param_part = by_name_to_by_param(by_name_part) # there may be no data for this specific parameter value combination if state_or_trans in by_name_part: part_corr = _corr_by_param(by_name_part, state_or_trans, attribute, param_idx) part_std_lut = np.mean([np.std(by_param_part[x][attribute]) for x in by_param_part.keys() if x[0] == state_or_trans]) _, part_std_param, _ = _std_by_param(by_param_part, distinct_values_by_param_index, state_or_trans, attribute, param_idx, verbose) ret['param_data'][param]['depends_for_codependent_value'][combi] = _depends_on_param(part_corr, part_std_param, part_std_lut) if state_or_trans in arg_count: for arg_index in range(arg_count[state_or_trans]): std_matrix, mean_std, lut_matrix = _std_by_param(by_param, distinct_values_by_param_index, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) ret['std_by_arg'].append(mean_std) ret['std_by_arg_values'].append(std_matrix) ret['lut_by_arg_values'].append(lut_matrix) ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, attribute, len(parameter_names) + arg_index)) if False: ret['depends_on_arg'].append(ret['corr_by_arg'][arg_index] > 0.1) elif ret['std_by_arg'][arg_index] == 0: # In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows. # This means that the variation of arg does not affect the model quality -> no influence ret['depends_on_arg'].append(False) else: ret['depends_on_arg'].append(ret['std_param_lut'] / ret['std_by_arg'][arg_index] < 0.5) return ret def _compute_param_statistics_parallel(arg): return { 'key' : arg['key'], 'result': _compute_param_statistics(*arg['args']) } def _all_params_are_numeric(data, param_idx): """Check if all `data['param'][*][param_idx]` elements are numeric, as reported by `utils.is_numeric`.""" param_values = list(map(lambda x: x[param_idx], data['param'])) if len(list(filter(is_numeric, param_values))) == len(param_values): return True return False def prune_dependent_parameters(by_name, parameter_names, correlation_threshold = 0.5): """ Remove dependent parameters from aggregate. :param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place. by_name[name][attribute] must be a list or 1-D numpy array. by_name[stanamete_or_trans]['param'] must be a list of parameter values. Other dict members are left as-is :param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place. :param correlation_threshold: Remove parameter if absolute correlation exceeds this threshold (default: 0.5) Model generation (and its components, such as relevant parameter detection and least squares optimization) only works if input variables (i.e., parameters) are independent of each other. This function computes the correlation coefficient for each pair of parameters and removes those which depend on each other. For each pair of dependent parameters, the lexically greater one is removed (e.g. "a" and "b" -> "b" is removed). """ parameter_indices_to_remove = list() for parameter_combination in itertools.product(range(len(parameter_names)), range(len(parameter_names))): index_1, index_2 = parameter_combination if index_1 >= index_2: continue parameter_values = [list(), list()] # both parameters have a value parameter_values_1 = list() # parameter 1 has a value parameter_values_2 = list() # parameter 2 has a value for name in by_name: for measurement in by_name[name]['param']: value_1 = measurement[index_1] value_2 = measurement[index_2] if is_numeric(value_1): parameter_values_1.append(value_1) if is_numeric(value_2): parameter_values_2.append(value_2) if is_numeric(value_1) and is_numeric(value_2): parameter_values[0].append(value_1) parameter_values[1].append(value_2) if len(parameter_values[0]): # Calculating the correlation coefficient only makes sense when neither value is constant if np.std(parameter_values_1) != 0 and np.std(parameter_values_2) != 0: correlation = np.corrcoef(parameter_values)[0][1] if correlation != np.nan and np.abs(correlation) > correlation_threshold: print('[!] Parameters {} <-> {} are correlated with coefficcient {}'.format(parameter_names[index_1], parameter_names[index_2], correlation)) if len(parameter_values_1) < len(parameter_values_2): index_to_remove = index_1 else: index_to_remove = index_2 print(' Removing parameter {}'.format(parameter_names[index_to_remove])) parameter_indices_to_remove.append(index_to_remove) remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove) def remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove): """ Remove parameters listed in `parameter_indices` from aggregate `by_name` and `parameter_names`. :param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place. by_name[name][attribute] must be a list or 1-D numpy array. by_name[stanamete_or_trans]['param'] must be a list of parameter values. Other dict members are left as-is :param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place. :param parameter_indices_to_remove: List of parameter indices to be removed """ # Start removal from the end of the list to avoid renumbering of list elemenets for parameter_index in sorted(parameter_indices_to_remove, reverse = True): for name in by_name: for measurement in by_name[name]['param']: measurement.pop(parameter_index) parameter_names.pop(parameter_index) class ParamStats: """ :param stats: `stats[state_or_tran][attribute]` = std_static, std_param_lut, ... (see `compute_param_statistics`) :param distinct_values: `distinct_values[state_or_tran][param]` = [distinct values in aggregate] :param distinct_values_by_param_index: `distinct_values[state_or_tran][i]` = [distinct values in aggregate] """ def __init__(self, by_name, by_param, parameter_names, arg_count, use_corrcoef = False, verbose = False): """ Compute standard deviation and correlation coefficient on parameterized data partitions. It is strongly recommended to vary all parameter values evenly. For instance, given two parameters, providing only the combinations (1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results. It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values) arguments: by_name -- ground truth partitioned by state/transition name. by_name[state_or_trans][attribute] must be a list or 1-D numpy array. by_name[state_or_trans]['param'] must be a list of parameter values corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the first ground truth element has the (lexically) first parameter set to 1, the second to 2 and the third to 3. by_param -- ground truth partitioned by state/transition name and parameters. by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array. parameter_names -- list of parameter names, must have the same order as the parameter values in by_param (lexical sorting is recommended). arg_count -- dict providing the number of functions args ("local parameters") for each function. use_corrcoef -- use correlation coefficient instead of stddev heuristic for parameter detection """ self.stats = dict() self.distinct_values = dict() self.distinct_values_by_param_index = dict() self.use_corrcoef = use_corrcoef self._parameter_names = parameter_names stats_queue = list() for state_or_tran in by_name.keys(): self.stats[state_or_tran] = dict() self.distinct_values_by_param_index[state_or_tran] = distinct_param_values(by_name, state_or_tran) self.distinct_values[state_or_tran] = dict() for i, param in enumerate(parameter_names): self.distinct_values[state_or_tran][param] = self.distinct_values_by_param_index[state_or_tran][i] for attribute in by_name[state_or_tran]['attributes']: stats_queue.append({ 'key': [state_or_tran, attribute], 'args': [by_name, by_param, parameter_names, arg_count, state_or_tran, attribute, self.distinct_values[state_or_tran], self.distinct_values_by_param_index[state_or_tran], verbose], }) with Pool() as pool: stats_results = pool.map(_compute_param_statistics_parallel, stats_queue) for stats in stats_results: state_or_tran, attribute = stats['key'] self.stats[state_or_tran][attribute] = stats['result'] def can_be_fitted(self, state_or_tran = None) -> bool: """ Return whether a sufficient amount of distinct numeric parameter values is available, allowing a parameter-aware model to be generated. :param state_or_tran: state or transition. If unset, returns whether any state or transition can be fitted. """ if state_or_tran is None: keys = self.stats.keys() else: keys = [state_or_tran] for key in keys: for param in self._parameter_names: if len(list(filter(lambda n: is_numeric(n), self.distinct_values[key][param]))) > 2: print(key, param, list(filter(lambda n: is_numeric(n), self.distinct_values[key][param]))) return True return False def static_submodel_params(self, state_or_tran, attribute): """ Return the union of all parameter values which decide whether another parameter influences the model or not. I.e., the returned list of dicts contains one entry for each parameter value combination which (probably) does not have any parameter influencing the model. If the current parameters matches one of these, a static sub-model built based on this subset of parameters can likely be used. """ # TODO pass def has_codependent_parameters(self, state_or_tran: str, attribute: str, param: str) -> bool: """ Return whether there are parameters which determine whether `param` influences `state_or_tran` `attribute` or not. :param state_or_tran: model state or transition :param attribute: model attribute :param param: parameter name """ if len(self.codependent_parameters(state_or_tran, attribute, param)): return True return False def codependent_parameters(self, state_or_tran: str, attribute: str, param: str) -> list: """ Return list of parameters which determine whether `param` influences `state_or_tran` `attribute` or not. :param state_or_tran: model state or transition :param attribute: model attribute :param param: parameter name """ if self.stats[state_or_tran][attribute]['depends_on_param'][param]: return self.stats[state_or_tran][attribute]['param_data'][param]['codependent_parameters'] return list() def has_codependent_parameters_union(self, state_or_tran: str, attribute: str) -> bool: """ Return whether there is a subset of parameters which decides whether `state_or_tran` `attribute` is static or parameter-dependent :param state_or_tran: model state or transition :param attribute: model attribute """ depends_on_a_parameter = False for param in self._parameter_names: if self.stats[state_or_tran][attribute]['depends_on_param'][param]: print('{}/{} depends on {}'.format(state_or_tran, attribute, param)) depends_on_a_parameter = True if len(self.codependent_parameters(state_or_tran, attribute, param)) == 0: print('has no codependent parameters') # Always depends on this parameter, regardless of other parameters' values return False return depends_on_a_parameter def codependent_parameters_union(self, state_or_tran: str, attribute: str) -> list: """ Return list of parameters which determine whether any parameter influences `state_or_tran` `attribute`. :param state_or_tran: model state or transition :param attribute: model attribute """ codependent_parameters = set() for param in self._parameter_names: if self.stats[state_or_tran][attribute]['depends_on_param'][param]: if len(self.codependent_parameters(state_or_tran, attribute, param)) == 0: return list(self._parameter_names) for codependent_param in self.codependent_parameters(state_or_tran, attribute, param): codependent_parameters.add(codependent_param) return sorted(codependent_parameters) def codependence_by_codependent_param_values(self, state_or_tran: str, attribute: str, param: str) -> dict: """ Return dict mapping codependent parameter values to a boolean indicating whether `param` influences `state_or_tran` `attribute`. If a dict value is true, `attribute` depends on `param` for the corresponding codependent parameter values, otherwise it does not. :param state_or_tran: model state or transition :param attribute: model attribute :param param: parameter name """ if self.stats[state_or_tran][attribute]['depends_on_param'][param]: return self.stats[state_or_tran][attribute]['param_data'][param]['depends_for_codependent_value'] return dict() def codependent_parameter_value_dicts(self, state_or_tran: str, attribute: str, param: str, kind='dynamic'): """ Return dicts of codependent parameter key-value mappings for which `param` influences (or does not influence) `state_or_tran` `attribute`. :param state_or_tran: model state or transition :param attribute: model attribute :param param: parameter name: :param kind: 'static' or 'dynamic'. If 'dynamic' (the default), returns codependent parameter values for which `param` influences `attribute`. If 'static', returns codependent parameter values for which `param` does not influence `attribute` """ codependent_parameters = self.stats[state_or_tran][attribute]['param_data'][param]['codependent_parameters'] codependence_info = self.stats[state_or_tran][attribute]['param_data'][param]['depends_for_codependent_value'] if len(codependent_parameters) == 0: return else: for param_values, is_dynamic in codependence_info.items(): if (is_dynamic and kind == 'dynamic') or (not is_dynamic and kind == 'static'): yield dict(zip(codependent_parameters, param_values)) def _generic_param_independence_ratio(self, state_or_trans, attribute): """ Return the heuristic ratio of parameter independence for state_or_trans and attribute. This is not supported if the correlation coefficient is used. A value close to 1 means no influence, a value close to 0 means high probability of influence. """ statistics = self.stats[state_or_trans][attribute] if self.use_corrcoef: # not supported raise ValueError if statistics['std_static'] == 0: return 0 return statistics['std_param_lut'] / statistics['std_static'] def generic_param_dependence_ratio(self, state_or_trans, attribute): """ Return the heuristic ratio of parameter dependence for state_or_trans and attribute. This is not supported if the correlation coefficient is used. A value close to 0 means no influence, a value close to 1 means high probability of influence. """ return 1 - self._generic_param_independence_ratio(state_or_trans, attribute) def _param_independence_ratio(self, state_or_trans: str, attribute: str, param: str) -> float: """ Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param. A value close to 1 means no influence, a value close to 0 means high probability of influence. """ statistics = self.stats[state_or_trans][attribute] if self.use_corrcoef: return 1 - np.abs(statistics['corr_by_param'][param]) if statistics['std_by_param'][param] == 0: if statistics['std_param_lut'] != 0: raise RuntimeError("wat") # In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows. # This means that the variation of param does not affect the model quality -> no influence, return 1 return 1. return statistics['std_param_lut'] / statistics['std_by_param'][param] def param_dependence_ratio(self, state_or_trans: str, attribute: str, param: str) -> float: """ Return the heuristic ratio of parameter dependence for state_or_trans, attribute, and param. A value close to 0 means no influence, a value close to 1 means high probability of influence. :param state_or_trans: state or transition name :param attribute: model attribute :param param: parameter name :returns: parameter dependence (float between 0 == no influence and 1 == high probability of influence) """ return 1 - self._param_independence_ratio(state_or_trans, attribute, param) def _arg_independence_ratio(self, state_or_trans, attribute, arg_index): statistics = self.stats[state_or_trans][attribute] if self.use_corrcoef: return 1 - np.abs(statistics['corr_by_arg'][arg_index]) if statistics['std_by_arg'][arg_index] == 0: if statistics['std_param_lut'] != 0: raise RuntimeError("wat") # In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows. # This means that the variation of arg does not affect the model quality -> no influence, return 1 return 1 return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index] def arg_dependence_ratio(self, state_or_trans: str, attribute: str, arg_index: int) -> float: return 1 - self._arg_independence_ratio(state_or_trans, attribute, arg_index) # This heuristic is very similar to the "function is not much better than # median" checks in get_fitted. So far, doing it here as well is mostly # a performance and not an algorithm quality decision. # --df, 2018-04-18 def depends_on_param(self, state_or_trans, attribute, param): """Return whether attribute of state_or_trans depens on param.""" return self.stats[state_or_trans][attribute]['depends_on_param'][param] # See notes on depends_on_param def depends_on_arg(self, state_or_trans, attribute, arg_index): """Return whether attribute of state_or_trans depens on arg_index.""" return self.stats[state_or_trans][attribute]['depends_on_arg'][arg_index]