import logging import numpy as np from multiprocessing import Pool logger = logging.getLogger(__name__) def PELT_get_changepoints(algo, penalty): res = (penalty, algo.predict(pen=penalty)) return res # calculates the raw_states for measurement measurement. num_measurement is used to identify the # return value # penalty, model and jump are directly passed to pelt def PELT_get_raw_states(num_measurement, algo, penalty): changepoints = algo.predict(pen=penalty) substates = list() start_index = 0 end_index = 0 # calc metrics for all states for changepoint in changepoints: # start_index of state is end_index of previous one # (Transitions are instantaneous) start_index = end_index end_index = changepoint - 1 substate = (start_index, end_index) substates.append(substate) return num_measurement, substates class PELT: def __init__(self, **kwargs): self.model = "l1" self.jump = 1 self.min_dist = 10 self.num_samples = None self.refinement_threshold = 200e-6 # 200 µW self.range_min = 0 self.range_max = 100 self.__dict__.update(kwargs) # signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry) def needs_refinement(self, signals): count = 0 for signal in signals: # test p1, median, p99 = np.percentile(signal[5:-5], (1, 50, 99)) if median - p1 > self.refinement_threshold: count += 1 elif p99 - median > self.refinement_threshold: count += 1 refinement_ratio = count / len(signals) return refinement_ratio > 0.3 def norm_signal(self, signal, scaler=25): max_val = max(np.abs(signal)) normed_signal = np.zeros(shape=len(signal)) for i, signal_i in enumerate(signal): normed_signal[i] = signal_i / max_val normed_signal[i] = normed_signal[i] * scaler return normed_signal def get_penalty_and_changepoints(self, signal): # imported here as ruptures is only used for changepoint detection. # This way, dfatool can be used without having ruptures installed as # long as --pelt isn't active. import ruptures if self.num_samples is not None and len(signal) > self.num_samples: self.jump = len(signal) // int(self.num_samples) else: self.jump = 1 algo = ruptures.Pelt( model=self.model, jump=self.jump, min_size=self.min_dist ).fit(self.norm_signal(signal)) queue = list() for i in range(0, 100): queue.append((algo, i)) with Pool() as pool: changepoints = pool.starmap(PELT_get_changepoints, queue) changepoints_by_penalty = dict() for res in changepoints: if len(res[1]) > 0 and res[1][-1] == len(signal): res[1].pop() changepoints_by_penalty[res[0]] = res[1] changepoint_counts = list() for i in range(0, 100): changepoint_counts.append(len(changepoints_by_penalty[i])) start_index = -1 end_index = -1 longest_start = -1 longest_end = -1 prev_val = -1 for i, num_changepoints in enumerate(changepoint_counts): if num_changepoints != prev_val: end_index = i - 1 if end_index - start_index > longest_end - longest_start: longest_start = start_index longest_end = end_index start_index = i if i == len(changepoint_counts) - 1: end_index = i if end_index - start_index > longest_end - longest_start: longest_start = start_index longest_end = end_index start_index = i prev_val = num_changepoints middle_of_plateau = longest_start + (longest_start - longest_start) // 2 changepoints = np.array(changepoints_by_penalty[middle_of_plateau]) return middle_of_plateau, changepoints def get_changepoints(self, signal): _, changepoints = self.get_penalty_and_changepoints(signal) return changepoints def get_penalty(self, signal): penalty, _ = self.get_penalty_and_changepoints(signal) return penalty def calc_raw_states(self, timestamps, signals, penalty, opt_model=None): """ Calculate substates for signals (assumed to be long to a single parameter configuration). :returns: List of substates with duration and mean power: [(substate 1 duration, substate 1 power), ...] """ # imported here as ruptures is only used for changepoint detection. # This way, dfatool can be used without having ruptures installed as # long as --pelt isn't active. import ruptures substate_data = list() raw_states_calc_args = list() for num_measurement, measurement in enumerate(signals): normed_signal = self.norm_signal(measurement) algo = ruptures.Pelt( model=self.model, jump=self.jump, min_size=self.min_dist ).fit(normed_signal) raw_states_calc_args.append((num_measurement, algo, penalty)) raw_states_list = [None] * len(signals) with Pool() as pool: raw_states_res = pool.starmap(PELT_get_raw_states, raw_states_calc_args) substate_counts = list(map(lambda x: len(x[1]), raw_states_res)) expected_substate_count = np.argmax(np.bincount(substate_counts)) usable_measurements = list( filter(lambda x: len(x[1]) == expected_substate_count, raw_states_res) ) logger.debug( f" There are {expected_substate_count} substates (std = {np.std(substate_counts)}, {len(usable_measurements)}/{len(raw_states_res)} results are usable)" ) for i in range(expected_substate_count): substate_data.append( {"duration": list(), "power": list(), "power_std": list()} ) for num_measurement, substates in usable_measurements: for i, substate in enumerate(substates): power_trace = signals[num_measurement][substate[0] : substate[1]] mean_power = np.mean(power_trace) std_power = np.std(power_trace) duration = ( timestamps[num_measurement][substate[1]] - timestamps[num_measurement][substate[0]] ) substate_data[i]["duration"].append(duration) substate_data[i]["power"].append(mean_power) substate_data[i]["power_std"].append(std_power) return substate_counts, substate_data