#!/usr/bin/env python3 import itertools import numpy as np import matplotlib.pyplot as plt import re def is_state(aggregate, name): """Return true if name is a state and not UNINITIALIZED.""" return aggregate[name]['isa'] == 'state' and name != 'UNINITIALIZED' def plot_states(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['means'] for key in keys] mdata = [int(model['state'][key]['power']['static']) for key in keys] boxplot(keys, data, 'Zustand', 'µW', modeldata=mdata) def plot_transitions(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['rel_energies'] for key in keys] mdata = [int(model['transition'][key]['rel_energy']['static']) for key in keys] boxplot(keys, data, 'Transition', 'pJ (rel)', modeldata=mdata) data = [aggregate[key]['energies'] for key in keys] mdata = [int(model['transition'][key]['energy']['static']) for key in keys] boxplot(keys, data, 'Transition', 'pJ', modeldata=mdata) def plot_states_duration(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['durations'] for key in keys] boxplot(keys, data, 'Zustand', 'µs') def plot_transitions_duration(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['durations'] for key in keys] boxplot(keys, data, 'Transition', 'µs') def plot_transitions_timeout(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['timeouts'] for key in keys] boxplot(keys, data, 'Timeout', 'µs') def plot_states_clips(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys] boxplot(keys, data, 'Zustand', '% Clipping') def plot_transitions_clips(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys] boxplot(keys, data, 'Transition', '% Clipping') def plot_substate_thresholds(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['sub_thresholds'] for key in keys] boxplot(keys, data, 'Zustand', 'substate threshold (mW/dmW)') def plot_histogram(data): n, bins, patches = plt.hist(data, 1000, normed=1, facecolor='green', alpha=0.75) plt.show() def plot_states_param(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED'] data = [aggregate[key]['means'] for key in keys] mdata = [int(model['state'][key[0]]['power']['static']) for key in keys] boxplot(keys, data, 'Transition', 'µW', modeldata=mdata) def plot_attribute(aggregate, attribute, attribute_unit='', key_filter=lambda x: True, **kwargs): """ Boxplot measurements of a single attribute according to the partitioning provided by aggregate. Plots aggregate[*][attribute] with one column per aggregate key. arguments: aggregate -- measurements. aggregate[*][attribute] must be list of numbers attribute -- attribute to plot, e.g. 'power' or 'duration' attribute_init -- attribute unit for display in X axis legend key_filter -- if set: Only plot keys where key_filter(key) returns True """ keys = list(filter(key_filter, sorted(aggregate.keys()))) data = [aggregate[key][attribute] for key in keys] boxplot(keys, data, attribute, attribute_unit, **kwargs) def plot_substate_thresholds_p(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED'] data = [aggregate[key]['sub_thresholds'] for key in keys] boxplot(keys, data, 'Zustand', '% Clipping') def plot_y(Y, **kwargs): if 'family' in kwargs and kwargs['family']: plot_xy(None, Y, **kwargs) else: plot_xy(np.arange(len(Y)), Y, **kwargs) def plot_xy(X, Y, xlabel=None, ylabel=None, title=None, output=None, family=False): fig, ax1 = plt.subplots(figsize=(10, 6)) if title is not None: fig.canvas.set_window_title(title) if xlabel is not None: ax1.set_xlabel(xlabel) if ylabel is not None: ax1.set_ylabel(ylabel) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.99) if family: cm = plt.get_cmap('brg', len(Y)) for i, YY in enumerate(Y): plt.plot(np.arange(len(YY)), YY, "-", markersize=2, color=cm(i)) else: plt.plot(X, Y, "bo", markersize=2) if output: plt.savefig(output) with open('{}.txt'.format(output), 'w') as f: print('X Y', file=f) for i in range(len(X)): print('{} {}'.format(X[i], Y[i]), file=f) else: plt.show() def _param_slice_eq(a, b, index): return (*a[1][:index], *a[1][index + 1:]) == (*b[1][:index], *b[1][index + 1:]) and a[0] == b[0] def plot_param(model, state_or_trans, attribute, param_idx, xlabel=None, ylabel=None, title=None, extra_function=None, output=None): fig, ax1 = plt.subplots(figsize=(10, 6)) if title is not None: fig.canvas.set_window_title(title) if xlabel is not None: ax1.set_xlabel(xlabel) if ylabel is not None: ax1.set_ylabel(ylabel) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.99) param_name = model.param_name(param_idx) function_filename = 'plot_param_{}_{}_{}.txt'.format(state_or_trans, attribute, param_name) data_filename_base = 'measurements_{}_{}_{}'.format(state_or_trans, attribute, param_name) param_model, param_info = model.get_fitted() by_other_param = {} XX = [] legend_sanitizer = re.compile(r'[^0-9a-zA-Z]+') for k, v in model.by_param.items(): if k[0] == state_or_trans: other_param_key = (*k[1][:param_idx], *k[1][param_idx + 1:]) if other_param_key not in by_other_param: by_other_param[other_param_key] = {'X': [], 'Y': []} by_other_param[other_param_key]['X'].extend([float(k[1][param_idx])] * len(v[attribute])) by_other_param[other_param_key]['Y'].extend(v[attribute]) XX.extend(by_other_param[other_param_key]['X']) XX = np.array(XX) x_range = int((XX.max() - XX.min()) * 10) xsp = np.linspace(XX.min(), XX.max(), x_range) YY = [xsp] YY_legend = [param_name] YY2 = [] YY2_legend = [] cm = plt.get_cmap('brg', len(by_other_param)) for i, k in sorted(enumerate(by_other_param), key=lambda x: x[1]): v = by_other_param[k] v['X'] = np.array(v['X']) v['Y'] = np.array(v['Y']) plt.plot(v['X'], v['Y'], "ro", color=cm(i), markersize=3) YY2_legend.append(legend_sanitizer.sub('_', 'X_{}'.format(k))) YY2.append(v['X']) YY2_legend.append(legend_sanitizer.sub('_', 'Y_{}'.format(k))) YY2.append(v['Y']) sanitized_k = legend_sanitizer.sub('_', str(k)) with open('{}_{}.txt'.format(data_filename_base, sanitized_k), 'w') as f: print('X Y', file=f) for i in range(len(v['X'])): print('{} {}'.format(v['X'][i], v['Y'][i]), file=f) # x_range = int((v['X'].max() - v['X'].min()) * 10) # xsp = np.linspace(v['X'].min(), v['X'].max(), x_range) if param_model: ysp = [] for x in xsp: xarg = [*k[:param_idx], x, *k[param_idx:]] ysp.append(param_model(state_or_trans, attribute, param=xarg)) plt.plot(xsp, ysp, "r-", color=cm(i), linewidth=0.5) YY.append(ysp) YY_legend.append(legend_sanitizer.sub('_', 'regr_{}'.format(k))) if extra_function is not None: ysp = [] with np.errstate(divide='ignore', invalid='ignore'): for x in xsp: xarg = [*k[:param_idx], x, *k[param_idx:]] ysp.append(extra_function(*xarg)) plt.plot(xsp, ysp, "r--", color=cm(i), linewidth=1, dashes=(3, 3)) YY.append(ysp) YY_legend.append(legend_sanitizer.sub('_', 'symb_{}'.format(k))) with open(function_filename, 'w') as f: print(' '.join(YY_legend), file=f) for elem in np.array(YY).T: print(' '.join(map(str, elem)), file=f) print(data_filename_base, function_filename) if output: plt.savefig(output) else: plt.show() def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X, Y, xaxis=None, yaxis=None): fig, ax1 = plt.subplots(figsize=(10, 6)) fig.canvas.set_window_title("fit %s" % (function)) plt.subplots_adjust(left=0.14, right=0.99, top=0.99, bottom=0.14) x_range = X[index].max() - X[index].min() + 1 if x_range > 100 and x_range < 500: xsp = np.linspace(X[index].min(), X[index].max(), x_range) else: xsp = np.linspace(X[index].min(), X[index].max(), 100) x_range = 100 if xaxis is not None: ax1.set_xlabel(xaxis) else: ax1.set_xlabel(parameters[index]) if yaxis is not None: ax1.set_ylabel(yaxis) else: ax1.set_ylabel('%s %s' % (name, datatype)) otherparams = list(set(itertools.product(*X[:index], *X[index + 1:]))) cm = plt.get_cmap('brg', len(otherparams)) for i in range(len(otherparams)): elem = otherparams[i] color = cm(i) tt = np.full((len(X[index])), True, dtype=bool) for k in range(len(parameters)): if k < index: tt &= X[k] == elem[k] elif k > index: tt &= X[k] == elem[k - 1] plt.plot(X[index][tt], Y[tt], "rx", color=color) xarg = [np.array([x] * x_range) for x in elem[:index]] xarg.append(xsp) xarg.extend([np.array([x] * x_range) for x in elem[index:]]) plt.plot(xsp, fitfunc(funp, xarg), "r-", color=color) plt.show() def boxplot(ticks, measurements, xlabel='', ylabel='', modeldata=None, output=None): fig, ax1 = plt.subplots(figsize=(10, 6)) fig.canvas.set_window_title('DriverEval') plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1) bp = plt.boxplot(measurements, notch=0, sym='+', vert=1, whis=1.5) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) # ax1.set_title('DriverEval') ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) numBoxes = len(measurements) xtickNames = plt.setp(ax1, xticklabels=ticks) plt.setp(xtickNames, rotation=0, fontsize=10) # boxColors = ['darkkhaki', 'royalblue'] medians = list(range(numBoxes)) for i in range(numBoxes): box = bp['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) # boxCoords = list(zip(boxX, boxY)) # Alternate between Dark Khaki and Royal Blue # k = i % 2 # boxPolygon = Polygon(boxCoords, facecolor=boxColors[k]) # ax1.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) plt.plot(medianX, medianY, 'k') medians[i] = medianY[0] # Finally, overplot the sample averages, with horizontal alignment # in the center of each box plt.plot([np.average(med.get_xdata())], [np.average(measurements[i])], color='w', marker='*', markeredgecolor='k') if modeldata: plt.plot([np.average(med.get_xdata())], [modeldata[i]], color='w', marker='o', markeredgecolor='k') pos = np.arange(numBoxes) + 1 upperLabels = [str(np.round(s, 2)) for s in medians] # weights = ['bold', 'semibold'] for tick, label in zip(range(numBoxes), ax1.get_xticklabels()): # k = tick % 2 y0, y1 = ax1.get_ylim() textpos = y0 + (y1 - y0) * 0.97 # ypos = ax1.get_ylim()[0] ax1.text(pos[tick], textpos, upperLabels[tick], horizontalalignment='center', size='small', color='royalblue') if output: plt.savefig(output) with open('{}.txt'.format(output), 'w') as f: print('X Y', file=f) for i, data in enumerate(measurements): for value in data: print('{} {}'.format(ticks[i], value), file=f) else: plt.show()