#!/usr/bin/env python3 import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Polygon def float_or_nan(n): if n == None: return np.nan try: return float(n) except ValueError: return np.nan def flatten(somelist): return [item for sublist in somelist for item in sublist] def is_state(aggregate, name): return aggregate[name]['isa'] == 'state' and name != 'UNINITIALIZED' def plot_states(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['means'] for key in keys] mdata = [int(model['state'][key]['power']['static']) for key in keys] boxplot(keys, mdata, None, data, 'Zustand', 'µW') def plot_transitions(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['rel_energies'] for key in keys] mdata = [int(model['transition'][key]['rel_energy']['static']) for key in keys] boxplot(keys, mdata, None, data, 'Transition', 'pJ (rel)') data = [aggregate[key]['energies'] for key in keys] mdata = [int(model['transition'][key]['energy']['static']) for key in keys] boxplot(keys, mdata, None, data, 'Transition', 'pJ') def plot_states_duration(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['durations'] for key in keys] boxplot(keys, None, None, data, 'Zustand', 'µs') def plot_transitions_duration(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['durations'] for key in keys] boxplot(keys, None, None, data, 'Transition', 'µs') def plot_transitions_timeout(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['timeouts'] for key in keys] boxplot(keys, None, None, data, 'Timeout', 'µs') def plot_states_clips(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys] boxplot(keys, None, None, data, 'Zustand', '% Clipping') def plot_transitions_clips(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys] boxplot(keys, None, None, data, 'Transition', '% Clipping') def plot_substate_thresholds(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['sub_thresholds'] for key in keys] boxplot(keys, None, None, data, 'Zustand', 'substate threshold (mW/dmW)') def plot_histogram(data): n, bins, patches = plt.hist(data, 1000, normed=1, facecolor='green', alpha=0.75) plt.show() def plot_states_param(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED'] data = [aggregate[key]['means'] for key in keys] mdata = [int(model['state'][key[0]]['power']['static']) for key in keys] boxplot(keys, mdata, None, data, 'Transition', 'µW') def plot_substate_thresholds_p(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED'] data = [aggregate[key]['sub_thresholds'] for key in keys] boxplot(keys, None, None, data, 'Zustand', '% Clipping') def plot_y(Y, ylabel = None, title = None): plot_xy(np.arange(len(Y)), Y, ylabel = ylabel, title = title) def plot_xy(X, Y, xlabel = None, ylabel = None, title = None): fig, ax1 = plt.subplots(figsize=(10,6)) if title != None: fig.canvas.set_window_title(title) if xlabel != None: ax1.set_xlabel(xlabel) if ylabel != None: ax1.set_ylabel(ylabel) plt.subplots_adjust(left = 0.05, bottom = 0.05, right = 0.99, top = 0.99) plt.plot(X, Y, "rx") plt.show() def _param_slice_eq(a, b, index): return (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0] def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabel = None, title = None, extra_functions = []): fig, ax1 = plt.subplots(figsize=(10,6)) if title != None: fig.canvas.set_window_title(title) if xlabel != None: ax1.set_xlabel(xlabel) if ylabel != None: ax1.set_ylabel(ylabel) plt.subplots_adjust(left = 0.05, bottom = 0.05, right = 0.99, top = 0.99) param_model, param_info = model.get_fitted() by_other_param = {} for k, v in model.by_param.items(): if k[0] == state_or_trans: other_param_key = (*k[1][:param_idx], *k[1][param_idx+1:]) if not other_param_key in by_other_param: by_other_param[other_param_key] = {'X': [], 'Y': []} by_other_param[other_param_key]['X'].extend([float(k[1][param_idx])] * len(v[attribute])) by_other_param[other_param_key]['Y'].extend(v[attribute]) cm = plt.get_cmap('brg', len(by_other_param)) for i, k in enumerate(by_other_param): v = by_other_param[k] v['X'] = np.array(v['X']) v['Y'] = np.array(v['Y']) plt.plot(v['X'], v['Y'], "rx", color=cm(i)) x_range = int((v['X'].max() - v['X'].min()) * 2) xsp = np.linspace(v['X'].min(), v['X'].max(), x_range) if param_model: ysp = [] for x in xsp: xarg = [*k[:param_idx], x, *k[param_idx:]] ysp.append(param_model(state_or_trans, attribute, param = xarg)) plt.plot(xsp, ysp, "r-", color=cm(i), linewidth=0.5) if len(extra_functions) != 0: for f in extra_functions: ysp = [] with np.errstate(divide='ignore', invalid='ignore'): for x in xsp: xarg = [*k[:param_idx], x, *k[param_idx:]] ysp.append(f(*xarg)) plt.plot(xsp, ysp, "r--", color=cm(i), linewidth=1, dashes=(3, 3)) plt.show() def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X, Y, xaxis=None, yaxis=None): fig, ax1 = plt.subplots(figsize=(10,6)) fig.canvas.set_window_title("fit %s" % (function)) plt.subplots_adjust(left=0.14, right=0.99, top=0.99, bottom=0.14) x_range = X[index].max() - X[index].min() + 1 if x_range > 100 and x_range < 500: xsp = np.linspace(X[index].min(), X[index].max(), x_range) else: xsp = np.linspace(X[index].min(), X[index].max(), 100) x_range = 100 if xaxis != None: ax1.set_xlabel(xaxis) else: ax1.set_xlabel(parameters[index]) if yaxis != None: ax1.set_ylabel(yaxis) else: ax1.set_ylabel('%s %s' % (name, datatype)) otherparams = list(set(itertools.product(*X[:index], *X[index+1:]))) cm = plt.get_cmap('brg', len(otherparams)) for i in range(len(otherparams)): elem = otherparams[i] color = cm(i) tt = np.full((len(X[index])), True, dtype=bool) for k in range(len(parameters)): if k < index: tt &= X[k] == elem[k] elif k > index: tt &= X[k] == elem[k-1] plt.plot(X[index][tt], Y[tt], "rx", color=color) xarg = [np.array([x] * x_range) for x in elem[:index]] xarg.append(xsp) xarg.extend([np.array([x] * x_range) for x in elem[index:]]) plt.plot(xsp, fitfunc(funp, xarg), "r-", color=color) plt.show() def boxplot(ticks, modeldata, onlinedata, mimosadata, xlabel, ylabel): fig, ax1 = plt.subplots(figsize=(10,6)) fig.canvas.set_window_title('DriverEval') plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1) bp = plt.boxplot(mimosadata, notch=0, sym='+', vert=1, whis=1.5) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) #ax1.set_title('DriverEval') ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) numBoxes = len(mimosadata) xtickNames = plt.setp(ax1, xticklabels=ticks) plt.setp(xtickNames, rotation=0, fontsize=10) boxColors = ['darkkhaki', 'royalblue'] medians = list(range(numBoxes)) for i in range(numBoxes): box = bp['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) boxCoords = list(zip(boxX, boxY)) # Alternate between Dark Khaki and Royal Blue k = i % 2 boxPolygon = Polygon(boxCoords, facecolor=boxColors[k]) #ax1.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) plt.plot(medianX, medianY, 'k') medians[i] = medianY[0] # Finally, overplot the sample averages, with horizontal alignment # in the center of each box plt.plot([np.average(med.get_xdata())], [np.average(mimosadata[i])], color='w', marker='*', markeredgecolor='k') if modeldata: plt.plot([np.average(med.get_xdata())], [modeldata[i]], color='w', marker='o', markeredgecolor='k') pos = np.arange(numBoxes) + 1 upperLabels = [str(np.round(s, 2)) for s in medians] weights = ['bold', 'semibold'] for tick, label in zip(range(numBoxes), ax1.get_xticklabels()): k = tick % 2 y0, y1 = ax1.get_ylim() textpos = y0 + (y1 - y0)*0.97 ypos = ax1.get_ylim()[0] ax1.text(pos[tick], textpos, upperLabels[tick], horizontalalignment='center', size='small', color='royalblue') plt.show()