""" Utilities for running benchmarks. Classes: SerialMonitor -- captures serial output for a specific amount of time ShellMonitor -- captures UNIX program output for a specific amount of time Functions: get_monitor -- return Monitor class suitable for the selected multipass arch get_counter_limits -- return arch-specific multipass counter limits (max value, max overflow) """ import json import logging import os import re import serial import serial.threaded import subprocess import sys import time from dfatool.lennart.SigrokCLIInterface import SigrokCLIInterface logger = logging.getLogger(__name__) class SerialReader(serial.threaded.Protocol): """ Character- to line-wise data buffer for serial interfaces. Reads in new data whenever it becomes available and exposes a line-based interface to applications. """ def __init__(self, callback=None): """Create a new SerialReader object.""" self.callback = callback self.recv_buf = "" self.lines = list() self.all_lines = list() def __call__(self): return self def data_received(self, data): """Append newly received serial data to the line buffer.""" try: str_data = data.decode("UTF-8") self.recv_buf += str_data # We may get anything between \r\n, \n\r and simple \n newlines. # We assume that \n is always present and use str.strip to remove leading/trailing \r symbols # Note: Do not call str.strip on lines[-1]! Otherwise, lines may be mangled lines = self.recv_buf.split("\n") if len(lines) > 1: new_lines = list(map(str.strip, lines[:-1])) self.lines.extend(new_lines) self.all_lines.extend(new_lines) self.recv_buf = lines[-1] if self.callback: for line in lines[:-1]: self.callback(str.strip(line)) except UnicodeDecodeError: pass # sys.stderr.write('UART output contains garbage: {data}\n'.format(data = data)) def get_lines(self) -> list: """ Return the latest batch of complete lines. The return value is a list and may be empty. Empties the internal line buffer to ensure that no line is returned twice. """ ret = self.lines self.lines = [] return ret def get_line(self) -> str: """ Return the latest complete line, or None. Empties the entire internal line buffer to ensure that no line is returned twice. """ if len(self.lines): ret = self.lines[-1] self.lines = [] return ret return None class SerialMonitor: """SerialMonitor captures serial output for a specific amount of time.""" def __init__(self, port: str, baud: int, callback=None): """ Create a new SerialMonitor connected to port at the specified baud rate. Communication uses no parity, no flow control, and one stop bit. Data collection starts immediately. """ self.ser = serial.serial_for_url(port, do_not_open=True) self.ser.baudrate = baud self.ser.parity = "N" self.ser.rtscts = False self.ser.xonxoff = False logger.debug(f"Opening serial port {port} with {baud}N1") try: self.ser.open() except serial.SerialException as e: sys.stderr.write( "Could not open serial port {}: {}\n".format(self.ser.name, e) ) sys.exit(1) self.reader = SerialReader(callback=callback) self.worker = serial.threaded.ReaderThread(self.ser, self.reader) self.worker.start() def run(self, timeout: int = 10) -> list: """ Collect serial output for timeout seconds and return a list of all output lines. Blocks until data collection is complete. """ time.sleep(timeout) return self.reader.get_lines() def get_lines(self) -> list: return self.reader.all_lines def get_files(self) -> list: return list() def get_config(self) -> dict: return dict() def close(self): """Close serial connection.""" self.worker.stop() self.ser.close() # TODO Optionale Kalibrierung mit bekannten Widerständen an GPIOs am Anfang (EnergyTrace selbst macht nur bis 1,5mA) # TODO Sync per LED? -> Vor und ggf nach jeder Transition kurz pulsen # TODO Für Verbraucher mit wenig Energiebedarf: Versorgung direkt per GPIO # -> Zu Beginn der Messung ganz ausknipsen class EnergyTraceMonitor(SerialMonitor): """EnergyTraceMonitor captures serial timing output and EnergyTrace energy data.""" # Zusätzliche key-value-Argumente von generate-dfa-benchmark.py --energytrace=... landen hier # (z.B. --energytrace=var1=bar,somecount=2 => EnerygTraceMonitor(..., var1="bar", somecount="2")). # Soald das EnergyTraceMonitor-Objekt erzeugt wird, beginnt die Messung (d.h. hier: msp430-etv wird gestartet) def __init__( self, port: str, baud: int, callback=None, voltage=3.3, plusplus=False ): super().__init__(port=port, baud=baud, callback=callback) self._voltage = voltage self._plusplus = plusplus self._output = time.strftime("%Y%m%d-%H%M%S.etlog") self._start_energytrace() def _start_energytrace(self): print("[%s] Starting Measurement" % type(self).__name__) if self._plusplus: cmd = ["msp430-etv", "--with-hardware-states", "--save", self._output, "0"] else: cmd = ["msp430-etv", "--save", self._output, "0"] self._logger = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True ) # Benchmark fertig -> externe Hilfsprogramme beenden def close(self): # wait for tail sync time.sleep(2) super().close() self._logger.send_signal(subprocess.signal.SIGINT) stdout, stderr = self._logger.communicate(timeout=15) print("[%s] Stopped Measurement" % type(self).__name__) # Zusätzliche Dateien, die mit dem Benchmark-Log und -Plan abgespeichert werden sollen # (hier: Die von msp430-etv generierten Logfiles) def get_files(self) -> list: print("[%s] Getting files" % type(self).__name__) return [self._output] # Benchmark-Konfiguration. Hier: Die (konstante) Spannung. # MSP430FR5969: 3,6V (wird aktuell nicht unterstützt) # MSP430FR5994: 3,3V (default) def get_config(self) -> dict: return {"voltage": self._voltage} class EnergyTraceLogicAnalyzerMonitor(EnergyTraceMonitor): """EnergyTraceLogicAnalyzerMonitor captures EnergyTrace energy data and LogicAnalyzer timing output.""" def __init__(self, port: str, baud: int, callback=None, voltage=3.3): super().__init__(port=port, baud=baud, callback=callback, voltage=voltage) options = {"fake": False, "sample_rate": 1_000_000} self.log_file = "logic_output_log_%s.json" % (time.strftime("%Y%m%d-%H%M%S")) # Initialization of Interfaces self.sig = SigrokCLIInterface( sample_rate=options["sample_rate"], fake=options["fake"], ) # Start Measurements self.sig.runMeasureAsynchronous() def close(self): super().close() # Read measured data # self.sig.waitForAsynchronousMeasure() self.sig.forceStopMeasure() time.sleep(0.2) sync_data = self.sig.getData() # TODO ensure that sync_data.getDict()["timestamps"] is not empty # (if it is, communication with the LA was broken the entire time) with open(self.log_file, "w") as fp: json.dump(sync_data.getDict(), fp) def get_files(self) -> list: files = [self.log_file] files.extend(super().get_files()) return files class MIMOSAMonitor(SerialMonitor): """MIMOSAMonitor captures serial output and MIMOSA energy data for a specific amount of time.""" def __init__( self, port: str, baud: int, callback=None, offset=130, shunt=330, voltage=3.3 ): super().__init__(port=port, baud=baud, callback=callback) self._offset = offset self._shunt = shunt self._voltage = voltage self._start_mimosa() def _mimosactl(self, subcommand): cmd = ["mimosactl"] cmd.append(subcommand) logger.debug(f"Executing {cmd}") res = subprocess.run(cmd) if res.returncode != 0: res = subprocess.run(cmd) if res.returncode != 0: raise RuntimeError( "{} returned {}".format(" ".join(cmd), res.returncode) ) def _mimosacmd(self, opts): cmd = ["MimosaCMD"] cmd.extend(opts) res = subprocess.run(cmd) if res.returncode != 0: raise RuntimeError("{} returned {}".format(" ".join(cmd), res.returncode)) def _start_mimosa(self): self._mimosactl("disconnect") self._mimosacmd(["--start"]) self._mimosacmd(["--parameter", "offset", str(self._offset)]) self._mimosacmd(["--parameter", "shunt", str(self._shunt)]) self._mimosacmd(["--parameter", "voltage", str(self._voltage)]) self._mimosacmd(["--mimosa-start"]) time.sleep(2) self._mimosactl("1k") # 987 ohm time.sleep(2) self._mimosactl("100k") # 99.3 kohm time.sleep(2) self._mimosactl("connect") def _stop_mimosa(self): # Make sure the MIMOSA daemon has gathered all needed data time.sleep(2) self._mimosacmd(["--mimosa-stop"]) mtime_changed = True mim_file = None time.sleep(1) # reverse sort ensures that we will get the latest file, which must # belong to the current measurements. This ensures that older .mim # files lying around in the directory will not confuse our # heuristic. for filename in sorted(os.listdir(), reverse=True): if re.search(r"[.]mim$", filename): mim_file = filename break while mtime_changed: mtime_changed = False if time.time() - os.stat(mim_file).st_mtime < 3: mtime_changed = True time.sleep(1) self._mimosacmd(["--stop"]) return mim_file def close(self): super().close() self.mim_file = self._stop_mimosa() def get_files(self) -> list: return [self.mim_file] def get_config(self) -> dict: return {"offset": self._offset, "shunt": self._shunt, "voltage": self._voltage} class ShellMonitor: """SerialMonitor runs a program and captures its output for a specific amount of time.""" def __init__(self, script: str, callback=None): """ Create a new ShellMonitor object. Does not start execution and monitoring yet. """ self.script = script self.callback = callback def run(self, timeout: int = 4) -> list: """ Run program for timeout seconds and return a list of its stdout lines. stderr and return status are discarded at the moment. """ if type(timeout) != int: raise ValueError("timeout argument must be int") res = subprocess.run( ["timeout", "{:d}s".format(timeout), self.script], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) if self.callback: for line in res.stdout.split("\n"): self.callback(line) return res.stdout.split("\n") def monitor(self): raise NotImplementedError def close(self): """ Do nothing, successfully. Intended for compatibility with SerialMonitor. """ pass class Arch: def __init__(self, name, opts=list()): self.name = name self.opts = opts self.info = self.get_info() def build(self, app, opts=list()): command = ["make", "arch={}".format(self.name), "app={}".format(app), "clean"] command.extend(self.opts) command.extend(opts) logger.debug(f"Building: {' '.join(command)}") res = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) if res.returncode != 0: raise RuntimeError( "Build failure, executing {}:\n".format(command) + res.stderr ) command = ["make", "-B", "arch={}".format(self.name), "app={}".format(app)] command.extend(self.opts) command.extend(opts) logger.debug(f"Building: {' '.join(command)}") res = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) if res.returncode != 0: raise RuntimeError( "Build failure, executing {}:\n ".format(command) + res.stderr ) return command def flash(self, app, opts=list()): command = ["make", "arch={}".format(self.name), "app={}".format(app), "program"] command.extend(self.opts) command.extend(opts) logger.debug(f"Flashing: {' '.join(command)}") res = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) if res.returncode != 0: raise RuntimeError("Flash failure") return command def get_info(self, opts=list()) -> list: """ Return multipass "make info" output. Returns a list. """ command = ["make", "arch={}".format(self.name), "info"] command.extend(self.opts) command.extend(opts) logger.debug(f"Getting Info: {' '.join(command)}") res = subprocess.run( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) if res.returncode != 0: raise RuntimeError("make info Failure") return res.stdout.split("\n") def _cached_info(self, opts=list()) -> list: if len(opts): return self.get_info(opts) return self.info def get_monitor(self, **kwargs) -> object: """ Return an appropriate monitor for arch, depending on "make info" output. Port and Baud rate are taken from "make info". :param energytrace: `EnergyTraceMonitor` options. Returns an EnergyTrace monitor if not None. :param mimosa: `MIMOSAMonitor` options. Returns a MIMOSA monitor if not None. """ for line in self.info: if "Monitor:" in line: _, port, arg = line.split(" ") if port == "run": return ShellMonitor(arg, **kwargs) elif "mimosa" in kwargs and kwargs["mimosa"] is not None: mimosa_kwargs = kwargs.pop("mimosa") return MIMOSAMonitor(port, arg, **mimosa_kwargs, **kwargs) elif "energytrace" in kwargs and kwargs["energytrace"] is not None: energytrace_kwargs = kwargs.pop("energytrace").copy() sync_mode = energytrace_kwargs.pop("sync") if sync_mode == "la": return EnergyTraceLogicAnalyzerMonitor( port, arg, **energytrace_kwargs, **kwargs ) else: return EnergyTraceMonitor( port, arg, **energytrace_kwargs, **kwargs ) else: kwargs.pop("energytrace", None) kwargs.pop("mimosa", None) return SerialMonitor(port, arg, **kwargs) raise RuntimeError("Monitor failure") def get_counter_limits(self, opts=list()) -> tuple: """Return multipass max counter and max overflow value for arch.""" for line in self._cached_info(opts): match = re.match("Counter Overflow: ([^/]*)/(.*)", line) if match: overflow_value = int(match.group(1)) max_overflow = int(match.group(2)) return overflow_value, max_overflow raise RuntimeError("Did not find Counter Overflow limits") def sleep_ms(self, duration: int, opts=list()) -> str: max_sleep = None if "msp430fr" in self.name: cpu_freq = None for line in self._cached_info(opts): match = re.match(r"CPU\s+Freq:\s+(.*)\s+Hz", line) if match: cpu_freq = int(match.group(1)) if cpu_freq is not None and cpu_freq > 8000000: max_sleep = 250 else: max_sleep = 500 if max_sleep is not None and duration > max_sleep: sub_sleep_count = duration // max_sleep tail_sleep = duration % max_sleep ret = f"for (unsigned char i = 0; i < {sub_sleep_count}; i++) {{ arch.sleep_ms({max_sleep}); }}\n" if tail_sleep > 0: ret += f"arch.sleep_ms({tail_sleep});\n" return ret return f"arch.sleep_ms({duration});\n" def get_counter_limits_us(self, opts=list()) -> tuple: """Return duration of one counter step and one counter overflow in us.""" cpu_freq = 0 overflow_value = 0 max_overflow = 0 for line in self._cached_info(opts): match = re.match(r"CPU\s+Freq:\s+(.*)\s+Hz", line) if match: cpu_freq = int(match.group(1)) match = re.match(r"Counter Overflow:\s+([^/]*)/(.*)", line) if match: overflow_value = int(match.group(1)) max_overflow = int(match.group(2)) if cpu_freq and overflow_value: return 1000000 / cpu_freq, overflow_value * 1000000 / cpu_freq, max_overflow raise RuntimeError("Did not find Counter Overflow limits")