import itertools import numpy as np import re arg_support_enabled = True def vprint(verbose, string): """ Print `string` if `verbose`. Prints string if verbose is a True value """ if verbose: print(string) def is_numeric(n): """Check if `n` is numeric (i.e., it can be converted to float).""" if n == None: return False try: float(n) return True except ValueError: return False def is_power_of_two(n): """Check if `n` is a power of two (1, 2, 4, 8, 16, ...).""" return n > 0 and (n & (n-1)) == 0 def float_or_nan(n): """Convert `n` to float (if numeric) or NaN.""" if n == None: return np.nan try: return float(n) except ValueError: return np.nan def soft_cast_int(n): """ Convert `n` to int (if numeric) or return it as-is. If `n` is empty, returns None. If `n` is not numeric, it is left unchanged. """ if n == None or n == '': return None try: return int(n) except ValueError: return n def soft_cast_float(n): """ Convert `n` to float (if numeric) or return it as-is. If `n` is empty, returns None. If `n` is not numeric, it is left unchanged. """ if n == None or n == '': return None try: return float(n) except ValueError: return n def flatten(somelist): """ Flatten a list. Example: flatten([[1, 2], [3], [4, 5]]) -> [1, 2, 3, 4, 5] """ return [item for sublist in somelist for item in sublist] def parse_conf_str(conf_str): """ Parse a configuration string `k1=v1,k2=v2`... and return a dict `{'k1': v1, 'k2': v2}`... Values are casted to float if possible and kept as-is otherwise. """ conf_dict = dict() for option in conf_str.split(','): key, value = option.split('=') conf_dict[key] = soft_cast_float(value) return conf_dict def remove_index_from_tuple(parameters, index): """ Remove the element at `index` from tuple `parameters`. :param parameters: tuple :param index: index of element which is to be removed :returns: parameters tuple without the element at index """ return (*parameters[:index], *parameters[index+1:]) def param_slice_eq(a, b, index): """ Check if by_param keys a and b are identical, ignoring the parameter at index. parameters: a, b -- (state/transition name, [parameter0 value, parameter1 value, ...]) index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.) Returns True iff a and b have the same state/transition name, and all parameters at positions != index are identical. example: ('foo', [1, 4]), ('foo', [2, 4]), 0 -> True ('foo', [1, 4]), ('foo', [2, 4]), 1 -> False """ if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]: return True return False def prune_dependent_parameters(by_name, parameter_names, correlation_threshold = 0.5): """ Remove dependent parameters from aggregate. :param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place. by_name[name][attribute] must be a list or 1-D numpy array. by_name[stanamete_or_trans]['param'] must be a list of parameter values. Other dict members are left as-is :param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place. :param correlation_threshold: Remove parameter if absolute correlation exceeds this threshold (default: 0.5) Model generation (and its components, such as relevant parameter detection and least squares optimization) only works if input variables (i.e., parameters) are independent of each other. This function computes the correlation coefficient for each pair of parameters and removes those which depend on each other. For each pair of dependent parameters, the lexically greater one is removed (e.g. "a" and "b" -> "b" is removed). """ parameter_indices_to_remove = list() for parameter_combination in itertools.product(range(len(parameter_names)), range(len(parameter_names))): index_1, index_2 = parameter_combination if index_1 >= index_2: continue parameter_values = [list(), list()] # both parameters have a value parameter_values_1 = list() # parameter 1 has a value parameter_values_2 = list() # parameter 2 has a value for name in by_name: for measurement in by_name[name]['param']: value_1 = measurement[index_1] value_2 = measurement[index_2] if is_numeric(value_1): parameter_values_1.append(value_1) if is_numeric(value_2): parameter_values_2.append(value_2) if is_numeric(value_1) and is_numeric(value_2): parameter_values[0].append(value_1) parameter_values[1].append(value_2) if len(parameter_values[0]): # Calculating the correlation coefficient only makes sense when neither value is constant if np.std(parameter_values_1) != 0 and np.std(parameter_values_2) != 0: correlation = np.corrcoef(parameter_values)[0][1] if correlation != np.nan and np.abs(correlation) > correlation_threshold: print('[!] Parameters {} <-> {} are correlated with coefficcient {}'.format(parameter_names[index_1], parameter_names[index_2], correlation)) if len(parameter_values_1) < len(parameter_values_2): index_to_remove = index_1 else: index_to_remove = index_2 print(' Removing parameter {}'.format(parameter_names[index_to_remove])) parameter_indices_to_remove.append(index_to_remove) remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove) def remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove): """ Remove parameters listed in `parameter_indices` from aggregate `by_name` and `parameter_names`. :param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place. by_name[name][attribute] must be a list or 1-D numpy array. by_name[stanamete_or_trans]['param'] must be a list of parameter values. Other dict members are left as-is :param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place. :param parameter_indices_to_remove: List of parameter indices to be removed """ # Start removal from the end of the list to avoid renumbering of list elemenets for parameter_index in sorted(parameter_indices_to_remove, reverse = True): for name in by_name: for measurement in by_name[name]['param']: measurement.pop(parameter_index) parameter_names.pop(parameter_index) def compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, verbose = False): """ Compute standard deviation and correlation coefficient for various data partitions. It is strongly recommended to vary all parameter values evenly across partitions. For instance, given two parameters, providing only the combinations (1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results. It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values) :param by_name: ground truth partitioned by state/transition name. by_name[state_or_trans][attribute] must be a list or 1-D numpy array. by_name[state_or_trans]['param'] must be a list of parameter values corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the first ground truth element has the (lexically) first parameter set to 1, the second to 2 and the third to 3. :param by_param: ground truth partitioned by state/transition name and parameters. by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array. :param parameter_names: list of parameter names, must have the same order as the parameter values in by_param (lexical sorting is recommended). :param arg_count: dict providing the number of functions args ("local parameters") for each function. :param state_or_trans: state or transition name, e.g. 'send' or 'TX' :param attribute: model attribute, e.g. 'power' or 'duration' :param verbose: print warning if some parameter partitions are too small for fitting :returns: a dict with the following content: std_static -- static parameter-unaware model error: stddev of by_name[state_or_trans][attribute] std_param_lut -- static parameter-aware model error: mean stddev of by_param[(state_or_trans, *)][attribute] std_by_param -- static parameter-aware model error ignoring a single parameter. dictionary with one key per parameter. The value is the mean stddev of measurements where all other parameters are fixed and the parameter in question is variable. E.g. std_by_param['X'] is the mean stddev of by_param[(state_or_trans, (X=*, Y=..., Z=...))][attribute]. std_by_arg -- same, but ignoring a single function argument Only set if state_or_trans appears in arg_count, empty dict otherwise. corr_by_param -- correlation coefficient corr_by_arg -- same, but ignoring a single function argument Only set if state_or_trans appears in arg_count, empty dict otherwise. """ ret = { 'std_static' : np.std(by_name[state_or_trans][attribute]), 'std_param_lut' : np.mean([np.std(by_param[x][attribute]) for x in by_param.keys() if x[0] == state_or_trans]), 'std_by_param' : {}, 'std_by_param_values' : {}, 'lut_by_param_values' : {}, 'std_by_arg' : [], 'std_by_arg_values' : [], 'lut_by_arg_values' : [], 'corr_by_param' : {}, 'corr_by_arg' : [], } np.seterr('raise') param_values = distinct_param_values(by_name, state_or_trans) for param_idx, param in enumerate(parameter_names): std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, param_idx, verbose) ret['std_by_param'][param] = mean_std ret['std_by_param_values'][param] = std_matrix ret['lut_by_param_values'][param] = lut_matrix ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx) if arg_support_enabled and state_or_trans in arg_count: for arg_index in range(arg_count[state_or_trans]): std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) ret['std_by_arg'].append(mean_std) ret['std_by_arg_values'].append(std_matrix) ret['lut_by_arg_values'].append(lut_matrix) ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, attribute, len(parameter_names) + arg_index)) return ret def distinct_param_values(by_name, state_or_tran): """ Return the distinct values of each parameter in by_name[state_or_tran]. E.g. if by_name[state_or_tran]['param'] contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3), this function returns [[1, 0], [1, 2, 3]]. Note that the order is not guaranteed to be deterministic at the moment. Also note that this function deliberately also consider None (uninitialized parameter with unknown value) as a distinct value. Benchmarks and drivers must ensure that a parameter is only None when its value is not important yet, e.g. a packet length parameter must only be None when write() or similar has not been called yet. Other parameters should always be initialized when leaving UNINITIALIZED. """ # TODO a set() is an _unordered_ collection, so this must be converted to # an OrderedDict or a list with a duplicate-pruning step distinct_values = [set() for i in range(len(by_name[state_or_tran]['param'][0]))] for param_tuple in by_name[state_or_tran]['param']: for i in range(len(param_tuple)): distinct_values[i].add(param_tuple[i]) # Convert sets to lists distinct_values = list(map(list, distinct_values)) return distinct_values def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False): u""" Calculate standard deviations for a static model where all parameters but param_index are constant. :param by_param: measurements sorted by key/transition name and parameter values :param state_or_tran: state or transition name (-> by_param[(state_or_tran, *)]) :param attribute: model attribute, e.g. 'power' or 'duration' (-> by_param[(state_or_tran, *)][attribute]) :param param_index: index of variable parameter :returns: (stddev matrix, mean stddev) Returns the mean standard deviation of all measurements of 'attribute' (e.g. power consumption or timeout) for state/transition 'state_or_tran' where parameter 'param_index' is dynamic and all other parameters are fixed. I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then this function returns the mean of the standard deviations of (a=1, b=*, c=1), (a=1, b=*, c=2), and so on. Also returns an (n-1)-dimensional array (where n is the number of parameters) giving the standard deviation of each individual partition. E.g. for param_index == 2 and 4 parameters, array[a][b][d] is the stddev of measurements with param0 == a, param1 == b, param2 variable, and param3 == d. """ param_values = list(remove_index_from_tuple(all_param_values, param_index)) info_shape = tuple(map(len, param_values)) # We will calculate the mean over the entire matrix later on. We cannot # guarantee that each entry will be filled in this loop (e.g. transitions # whose arguments are combined using 'zip' rather than 'cartesian' always # have missing parameter combinations), we pre-fill it with NaN and use # np.nanmean to skip those when calculating the mean. stddev_matrix = np.full(info_shape, np.nan) lut_matrix = np.full(info_shape, np.nan) for param_value in itertools.product(*param_values): param_partition = list() std_list = list() for k, v in by_param.items(): if k[0] == state_or_tran and (*k[1][:param_index], *k[1][param_index+1:]) == param_value: param_partition.extend(v[attribute]) std_list.append(np.std(v[attribute])) if len(param_partition) > 1: matrix_index = list(range(len(param_value))) for i in range(len(param_value)): matrix_index[i] = param_values[i].index(param_value[i]) matrix_index = tuple(matrix_index) stddev_matrix[matrix_index] = np.std(param_partition) lut_matrix[matrix_index] = np.mean(std_list) # This can (and will) happen in normal operation, e.g. when a transition's # arguments are combined using 'zip' rather than 'cartesian'. #elif len(param_partition) == 1: # vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value)) #else: # vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value)) if np.all(np.isnan(stddev_matrix)): vprint(verbose, '[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index)) vprint(verbose, 'stddev_matrix = {}'.format(stddev_matrix)) return stddev_matrix, 0. return stddev_matrix, np.nanmean(stddev_matrix), lut_matrix #np.mean([np.std(partition) for partition in partitions]) def _corr_by_param(by_name, state_or_trans, attribute, param_index): if _all_params_are_numeric(by_name[state_or_trans], param_index): param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param'])))) try: return np.corrcoef(by_name[state_or_trans][attribute], param_values)[0, 1] except FloatingPointError: # Typically happens when all parameter values are identical. # Building a correlation coefficient is pointless in this case # -> assume no correlation return 0. except ValueError: print('[!] Exception in _corr_by_param(by_name, state_or_trans={}, attribute={}, param_index={})'.format(state_or_trans, attribute, param_index)) print('[!] while executing np.corrcoef(by_name[{}][{}]={}, {}))'.format(state_or_trans, attribute, by_name[state_or_trans][attribute], param_values)) raise else: return 0. def _all_params_are_numeric(data, param_idx): """Check if all `data['param'][*][param_idx]` elements are numeric, as reported by `utils.is_numeric`.""" param_values = list(map(lambda x: x[param_idx], data['param'])) if len(list(filter(is_numeric, param_values))) == len(param_values): return True return False class OptionalTimingAnalysis: def __init__(self, enabled = True): self.enabled = enabled self.wrapped_lines = list() self.index = 1 def get_header(self): ret = '' if self.enabled: ret += '#define TIMEIT(index, functioncall) ' ret += 'counter.start(); ' ret += 'functioncall; ' ret += 'counter.stop();' ret += 'kout << endl << index << " :: " << counter.value << "/" << counter.overflow << endl;\n' return ret def wrap_codeblock(self, codeblock): if not self.enabled: return codeblock lines = codeblock.split('\n') ret = list() for line in lines: if re.fullmatch('.+;', line): ret.append('TIMEIT( {:d}, {} )'.format(self.index, line)) self.wrapped_lines.append(line) self.index += 1 else: ret.append(line) return '\n'.join(ret)