#!/usr/bin/env python3 from dfatool import dfatool as dt from dfatool import parameters from dfatool.utils import by_name_to_by_param import unittest import numpy as np class TestModels(unittest.TestCase): def test_distinct_param_values(self): X = np.arange(35) by_name = { "TX": { "param": [(x % 5, x % 7) for x in X], "power": X, "attributes": ["power"], } } self.assertEqual( parameters.distinct_param_values(by_name, "TX"), [list(range(5)), list(range(7))], ) def test_parameter_detection_linear(self): rng = np.random.default_rng() X = np.arange(200) % 50 Y = X + rng.normal(size=X.size) by_name = { "TX": { "param": [(x % 5, x) for x in X], "power": Y, "attributes": ["power"], } } by_param = by_name_to_by_param(by_name) stats = parameters.ParamStats(by_name, by_param, ["p_mod5", "p_linear"], dict()) self.assertEqual(stats.depends_on_param("TX", "power", "p_mod5"), False) self.assertEqual(stats.depends_on_param("TX", "power", "p_linear"), True) paramfit = dt.ParallelParamFit(by_param) paramfit.enqueue("TX", "power", 1, "p_linear") paramfit.fit() fit_result = dt.get_fit_result(paramfit.results, "TX", "power") self.assertEqual(fit_result["p_linear"]["best"], "linear") if __name__ == "__main__": unittest.main()