#!/usr/bin/env python3 from dfatool.functions import StaticFunction from dfatool.loader import TimingData, pta_trace_to_aggregate from dfatool.model import AnalyticModel import os import unittest class TestModels(unittest.TestCase): def test_model_singlefile_rf24(self): raw_data = TimingData(["test-data/20190815_111745_nRF24_no-rx.json"]) preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) model = AnalyticModel(by_name, parameters, arg_count) self.assertEqual(model.names, "setPALevel setRetries setup write".split(" ")) static_model = model.get_static() self.assertAlmostEqual(static_model("setPALevel", "duration"), 146, places=0) self.assertAlmostEqual(static_model("setRetries", "duration"), 73, places=0) self.assertAlmostEqual(static_model("setup", "duration"), 6533, places=0) self.assertAlmostEqual(static_model("write", "duration"), 12634, places=0) for transition in "setPALevel setRetries setup write".split(" "): self.assertAlmostEqual( model.attr_by_name[transition]["duration"].stats.param_dependence_ratio( "channel" ), 0, places=2, ) param_model, param_info = model.get_fitted() self.assertIsInstance(param_info("setPALevel", "duration"), StaticFunction) self.assertIsInstance(param_info("setRetries", "duration"), StaticFunction) self.assertIsInstance(param_info("setup", "duration"), StaticFunction) self.assertEqual( param_info("write", "duration").model_function, "0 + regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * function_arg(1) + regression_arg(4) * parameter(max_retry_count) * parameter(retry_delay) + regression_arg(5) * parameter(max_retry_count) * function_arg(1) + regression_arg(6) * parameter(retry_delay) * function_arg(1) + regression_arg(7) * parameter(max_retry_count) * parameter(retry_delay) * function_arg(1)", ) self.assertAlmostEqual( param_info("write", "duration").model_args[0], 1281, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[1], 464, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[2], 1, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[3], -9, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[4], 1, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[5], 0, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[6], 0, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[7], 0, places=0 ) def test_dependent_parameter_pruning(self): raw_data = TimingData(["test-data/20190815_103347_nRF24_no-rx.json"]) preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) model = AnalyticModel(by_name, parameters, arg_count) self.assertEqual( model.names, "getObserveTx setPALevel setRetries setup write".split(" ") ) static_model = model.get_static() self.assertAlmostEqual(static_model("getObserveTx", "duration"), 75, places=0) self.assertAlmostEqual(static_model("setPALevel", "duration"), 146, places=0) self.assertAlmostEqual(static_model("setRetries", "duration"), 73, places=0) self.assertAlmostEqual(static_model("setup", "duration"), 6533, places=0) self.assertAlmostEqual(static_model("write", "duration"), 12634, places=0) for transition in "getObserveTx setPALevel setRetries setup write".split(" "): self.assertAlmostEqual( model.attr_by_name[transition]["duration"].stats.param_dependence_ratio( "channel" ), 0, places=2, ) param_model, param_info = model.get_fitted() self.assertIsInstance(param_info("getObserveTx", "duration"), StaticFunction) self.assertIsInstance(param_info("setPALevel", "duration"), StaticFunction) self.assertIsInstance(param_info("setRetries", "duration"), StaticFunction) self.assertIsInstance(param_info("setup", "duration"), StaticFunction) self.assertEqual( param_info("write", "duration").model_function, "0 + regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * function_arg(1) + regression_arg(4) * parameter(max_retry_count) * parameter(retry_delay) + regression_arg(5) * parameter(max_retry_count) * function_arg(1) + regression_arg(6) * parameter(retry_delay) * function_arg(1) + regression_arg(7) * parameter(max_retry_count) * parameter(retry_delay) * function_arg(1)", ) self.assertAlmostEqual( param_info("write", "duration").model_args[0], 1282, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[1], 463, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[2], 1, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[3], -9, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[4], 1, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[5], 0, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[6], 0, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[7], 0, places=0 ) def test_function_override(self): os.environ["DFATOOL_NO_DECISIONTREES"] = "1" raw_data = TimingData(["test-data/20190815_122531_nRF24_no-rx.json"]) preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) model = AnalyticModel( by_name, parameters, arg_count, function_override={ ( "write", "duration", ): "(parameter(auto_ack!) * (regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay))) + ((1 - parameter(auto_ack!)) * regression_arg(4))" }, ) self.assertEqual( model.names, "setAutoAck setPALevel setRetries setup write".split(" ") ) static_model = model.get_static() self.assertAlmostEqual(static_model("setAutoAck", "duration"), 72, places=0) self.assertAlmostEqual(static_model("setPALevel", "duration"), 146, places=0) self.assertAlmostEqual(static_model("setRetries", "duration"), 73, places=0) self.assertAlmostEqual(static_model("setup", "duration"), 6533, places=0) self.assertAlmostEqual(static_model("write", "duration"), 1181, places=0) for transition in "setAutoAck setPALevel setRetries setup write".split(" "): self.assertAlmostEqual( model.attr_by_name[transition]["duration"].stats.param_dependence_ratio( "channel" ), 0, places=2, ) param_model, param_info = model.get_fitted() self.assertIsInstance(param_info("setAutoAck", "duration"), StaticFunction) self.assertIsInstance(param_info("setPALevel", "duration"), StaticFunction) self.assertIsInstance(param_info("setRetries", "duration"), StaticFunction) self.assertIsInstance(param_info("setup", "duration"), StaticFunction) self.assertEqual( param_info("write", "duration").model_function, "(parameter(auto_ack!) * (regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay))) + ((1 - parameter(auto_ack!)) * regression_arg(4))", ) self.assertAlmostEqual( param_info("write", "duration").model_args[0], 1162, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[1], 464, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[2], 1, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[3], 1, places=0 ) self.assertAlmostEqual( param_info("write", "duration").model_args[4], 1086, places=0 ) os.environ.pop("DFATOOL_NO_DECISIONTREES") if __name__ == "__main__": unittest.main()