1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
|
import matplotlib.pyplot as plt
import json
from kneed import KneeLocator
import ruptures as rpt
import time
from multiprocessing import Pool, Manager
import numpy as np
import sys
import getopt
import re
from dfatool.dfatool import RawData
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=10 --refinement_thresh=100
def plot_data_from_json(filename, trace_num, x_axis, y_axis):
with open(filename, 'r') as f:
tx_data = json.load(f)
print(tx_data[trace_num]['parameter'])
plt.plot(tx_data[trace_num]['offline'][0]['uW'])
plt.xlabel(x_axis)
plt.ylabel(y_axis)
plt.show()
def plot_data_vs_mean(signal, x_axis, y_axis):
plt.plot(signal)
average = np.mean(signal)
plt.hlines(average, 0, len(signal))
plt.xlabel(x_axis)
plt.ylabel(y_axis)
plt.show()
def plot_data_vs_data_vs_means(signal1, signal2, x_axis, y_axis):
plt.plot(signal1)
lens = max(len(signal1), len(signal2))
average = np.mean(signal1)
plt.hlines(average, 0, lens, color='red')
plt.vlines(len(signal1), 0, 100000, color='red', linestyles='dashed')
plt.plot(signal2)
average = np.mean(signal2)
plt.hlines(average, 0, lens, color='green')
plt.vlines(len(signal2), 0, 100000, color='green', linestyles='dashed')
plt.xlabel(x_axis)
plt.ylabel(y_axis)
plt.show()
def get_bkps(algo, pen, q):
res = pen, len(algo.predict(pen=pen))
q.put(pen)
return res
def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing', plotting=False):
kneedle = KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
if plotting:
kneedle.plot_knee()
kneepoint = (kneedle.knee, kneedle.knee_y)
return kneepoint
def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=0, range_max=50, num_processes=8, refresh_delay=1,
refresh_thresh=5, S=1.0, pen_override=None, pen_modifier=None, plotting=False):
# default params in Function
if model is None:
model = 'l1'
if jump is None:
jump = 5
if min_dist is None:
min_dist = 2
if range_min is None:
range_min = 0
if range_max is None:
range_max = 50
if num_processes is None:
num_processes = 8
if refresh_delay is None:
refresh_delay = 1
if refresh_thresh is None:
refresh_thresh = 5
if S is None:
S = 1.0
if plotting is None:
plotting = False
if pen_modifier is None:
pen_modifier = 1
# change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
# https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
# model = "l1" #"l1" # "l2", "rbf"
algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)
### CALC BKPS WITH DIFF PENALTYS
if pen_override is None and range_max != range_min:
# building args array for parallelizing
args = []
# for displaying progression
m = Manager()
q = m.Queue()
for i in range(range_min, range_max + 1):
args.append((algo, i, q))
print_info('starting kneepoint calculation.')
# init Pool with num_proesses
with Pool(num_processes) as p:
# collect results from pool
result = p.starmap_async(get_bkps, args)
# monitor loop
percentage = -100 # Force display of 0%
i = 0
while True:
if result.ready():
break
else:
size = q.qsize()
last_percentage = percentage
percentage = round(size / (range_max - range_min) * 100, 2)
if percentage >= last_percentage + 2 or i >= refresh_thresh:
print_info('Current progress: ' + str(percentage) + '%')
i = 0
else:
i += 1
time.sleep(refresh_delay)
res = result.get()
print_info("Finished kneepoint calculation.")
# DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
# split x and y coords to pass to kneedle
pen_val = [x[0] for x in res]
fitted_bkps_val = [x[1] for x in res]
# # plot to look at res
knee = find_knee_point(pen_val, fitted_bkps_val, S=S, plotting=plotting)
# plt.xlabel('Penalty')
# plt.ylabel('Number of Changepoints')
# plt.plot(pen_val, fitted_bkps_val)
# plt.vlines(knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
# print("knee: " + str(knee[0]))
# plt.show()
# modify knee according to options. Defaults to 1 * knee
knee = (knee[0] * pen_modifier, knee[1])
else:
# use forced pen value for plotting if specified. Else use only pen in range
if pen_override is not None:
knee = (pen_override, None)
else:
knee = (range_min, None)
print_info("" + str(knee[0]) + " has been selected as kneepoint.")
# plt.plot(pen_val, fittet_bkps_val)
if knee[0] is not None:
bkps = algo.predict(pen=knee[0])
if plotting:
fig, ax = rpt.display(signal, bkps)
plt.show()
return bkps
else:
print_error('With the current thresh-hold S=' + str(S) + ' it is not possible to select a penalty value.')
exit()
# very short benchmark yielded approx. 1/3 of speed compared to solution with sorting
def needs_refinement_no_sort(signal, mean, thresh):
# linear search for the top 10%/ bottom 10%
# should be sufficient
length_of_signal = len(signal)
percentile_size = int()
percentile_size = length_of_signal // 100
upper_percentile = [None] * percentile_size
lower_percentile = [None] * percentile_size
fill_index_upper = percentile_size - 1
fill_index_lower = percentile_size - 1
index_smallest_val = fill_index_upper
index_largest_val = fill_index_lower
for x in signal:
if x > mean:
# will be in upper percentile
if fill_index_upper >= 0:
upper_percentile[fill_index_upper] = x
if x < upper_percentile[index_smallest_val]:
index_smallest_val = fill_index_upper
fill_index_upper = fill_index_upper - 1
continue
if x > upper_percentile[index_smallest_val]:
# replace smallest val. Find next smallest val
upper_percentile[index_smallest_val] = x
index_smallest_val = 0
i = 0
for y in upper_percentile:
if upper_percentile[i] < upper_percentile[index_smallest_val]:
index_smallest_val = i
i = i + 1
else:
if fill_index_lower >= 0:
lower_percentile[fill_index_lower] = x
if x > lower_percentile[index_largest_val]:
index_largest_val = fill_index_upper
fill_index_lower = fill_index_lower - 1
continue
if x < lower_percentile[index_largest_val]:
# replace smallest val. Find next smallest val
lower_percentile[index_largest_val] = x
index_largest_val = 0
i = 0
for y in lower_percentile:
if lower_percentile[i] > lower_percentile[index_largest_val]:
index_largest_val = i
i = i + 1
# should have the percentiles
lower_percentile_mean = np.mean(lower_percentile)
upper_percentile_mean = np.mean(upper_percentile)
dist = mean - lower_percentile_mean
if dist > thresh:
return True
dist = upper_percentile_mean - mean
if dist > thresh:
return True
return False
# Very short benchmark yielded approx. 3 times the speed of solution not using sort
# TODO: Decide whether median is really the better baseline than mean
def needs_refinement(signal, thresh):
sorted_signal = sorted(signal)
length_of_signal = len(signal)
percentile_size = int()
percentile_size = length_of_signal // 100
lower_percentile = sorted_signal[0:percentile_size]
upper_percentile = sorted_signal[length_of_signal - percentile_size: length_of_signal]
lower_percentile_mean = np.mean(lower_percentile)
upper_percentile_mean = np.mean(upper_percentile)
median = np.median(sorted_signal)
dist = median - lower_percentile_mean
if dist > thresh:
return True
dist = upper_percentile_mean - median
if dist > thresh:
return True
return False
def print_info(str):
str_lst = str.split(sep='\n')
for str in str_lst:
print("[INFO]" + str)
def print_warning(str):
str_lst = str.split(sep='\n')
for str in str_lst:
print("[WARNING]" + str)
def print_error(str):
str_lst = str.split(sep='\n')
for str in str_lst:
print("[ERROR]" + str, file=sys.stderr)
if __name__ == '__main__':
# OPTION RECOGNITION
opt = dict()
optspec = (
"filename= "
"v "
"model= "
"jump= "
"min_dist= "
"range_min= "
"range_max= "
"num_processes= "
"refresh_delay= "
"refresh_thresh= "
"S= "
"pen_override= "
"pen_modifier= "
"plotting= "
"refinement_thresh= "
)
opt_filename = None
opt_verbose = False
opt_model = None
opt_jump = None
opt_min_dist = None
opt_range_min = None
opt_range_max = None
opt_num_processes = None
opt_refresh_delay = None
opt_refresh_thresh = None
opt_S = None
opt_pen_override = None
opt_pen_modifier = None
opt_plotting = False
opt_refinement_thresh = None
try:
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
opt[optname] = parameter
if 'filename' not in opt:
print_error("No file specified!")
sys.exit(2)
else:
opt_filename = opt['filename']
if 'v' in opt:
opt_verbose = True
opt_plotting = True
if 'model' in opt:
opt_model = opt['model']
if 'jump' in opt:
try:
opt_jump = int(opt['jump'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'min_dist' in opt:
try:
opt_min_dist = int(opt['min_dist'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'range_min' in opt:
try:
opt_range_min = int(opt['range_min'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'range_max' in opt:
try:
opt_range_max = int(opt['range_max'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'num_processes' in opt:
try:
opt_num_processes = int(opt['num_processes'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'refresh_delay' in opt:
try:
opt_refresh_delay = int(opt['refresh_delay'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'refresh_thresh' in opt:
try:
opt_refresh_thresh = int(opt['refresh_thresh'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'S' in opt:
try:
opt_S = float(opt['S'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'pen_override' in opt:
try:
opt_pen_override = int(opt['pen_override'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'pen_modifier' in opt:
try:
opt_pen_modifier = float(opt['pen_modifier'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
if 'refinement_thresh' in opt:
try:
opt_refinement_thresh = int(opt['refinement_thresh'])
except ValueError as verr:
print(verr, file=sys.stderr)
sys.exit(2)
except getopt.GetoptError as err:
print(err, file=sys.stderr)
sys.exit(2)
# OPENING DATA
if ".json" in opt_filename:
# open file with trace data from json
print_info(" Will only refine the state which is present in " + opt_filename + " if necessary.")
with open(opt_filename, 'r') as f:
states = json.load(f)
# loop through all traces check if refinement is necessary
print_info("Checking if refinement is necessary...")
for measurements_by_state in states:
# loop through all occurrences of the looked at state
print_info("Looking at state '" + measurements_by_state['name'] + "' with params: "
+ str(measurements_by_state['parameter']))
refine = False
for measurement in measurements_by_state['offline']:
# loop through measurements of particular state
# an check if state needs refinement
signal = measurement['uW']
# mean = measurement['uW_mean']
# TODO: Decide if median is really the better baseline than mean
if needs_refinement(signal, opt_refinement_thresh):
print_info("Refinement is necessary!")
refine = True
break
if not refine:
print_info("No refinement necessary for state '" + measurements_by_state['name'] + "'")
else:
# calc and save all bkpts for the given state and param config
raw_states_list = list()
for measurement in measurements_by_state['offline']:
signal = np.array(measurement['uW'])
normed_signal = np.zeros(shape=len(signal))
for i in range(0, len(signal)):
normed_signal[i] = signal[i] / 1000
bkpts = calc_pelt(normed_signal, model=opt_model, range_min=opt_range_min, range_max=opt_range_max,
num_processes=opt_num_processes, jump=opt_jump, S=opt_S,
pen_override=opt_pen_override, pen_modifier=opt_pen_modifier)
calced_states = list()
start_time = 0
end_time = 0
for bkpt in bkpts:
# start_time of state is end_time of previous one(Transitions are instantaneous)
start_time = end_time
end_time = bkpt
power_vals = signal[start_time: end_time]
mean_power = np.mean(power_vals)
std_dev = np.std(power_vals)
calced_state = (start_time, end_time, mean_power, std_dev)
calced_states.append(calced_state)
num = 0
new_avg_std = 0
for s in calced_states:
print_info("State " + str(num) + " starts at t=" + str(s[0]) + " and ends at t=" + str(s[1])
+ " while using " + str(s[2]) + "uW with sigma=" + str(s[3]))
num = num + 1
new_avg_std = new_avg_std + s[3]
new_avg_std = new_avg_std / len(calced_states)
change_avg_std = measurement['uW_std'] - new_avg_std
print_info("The average standard deviation for the newly found states is " + str(new_avg_std))
print_info("That is a reduction of " + str(change_avg_std))
raw_states_list.append(calced_states)
num_states_array = [int()] * len(raw_states_list)
i = 0
for x in raw_states_list:
num_states_array[i] = len(x)
i = i + 1
avg_num_states = np.mean(num_states_array)
num_states_dev = np.std(num_states_array)
print_info("On average " + str(avg_num_states) + " States have been found. The standard deviation"
+ " is " + str(num_states_dev))
# TODO: MAGIC NUMBER
if num_states_dev > 1:
print_warning("The number of states varies strongly across measurements. Consider choosing a "
"larger value for S or using the pen_modifier option.")
time.sleep(5)
# TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
# Einfach Durchschnitt nehmen?
# Preliminary decision: Further on only use the traces, which have the most frequent state count
counts = np.bincount(num_states_array)
num_raw_states = np.argmax(counts)
print_info("Choose " + str(num_raw_states) + " as number of raw_states.")
i = 0
cluster_labels_list = []
num_cluster_list = []
for raw_states in raw_states_list:
# iterate through raw states from measurements
if len(raw_states) == num_raw_states:
# build array with power values to cluster these
value_to_cluster = np.zeros((num_raw_states, 2))
j = 0
for s in raw_states:
value_to_cluster[j][0] = s[2]
value_to_cluster[j][1] = 0
j = j + 1
# linked = linkage(value_to_cluster, 'single')
#
# labelList = range(1, 11)
#
# plt.figure(figsize=(10, 7))
# dendrogram(linked,
# orientation='top',
# distance_sort='descending',
# show_leaf_counts=True)
# plt.show()
# TODO: Automatic detection of number of clusters. Aktuell noch MAGIC NUMBER
# cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='euclidean',
# linkage='ward', distance_threshold=opt_refinement_thresh)
cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
cluster.fit_predict(value_to_cluster)
print_info("Cluster labels:\n" + str(cluster.labels_))
# plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow')
# plt.show()
# TODO: Problem: Der Algorithmus nummeriert die Zustände nicht immer gleich... also bspw.:
# mal ist das tatsächliche Transmit mit 1 belabelt und mal mit 3
cluster_labels_list.append(cluster.labels_)
num_cluster_list.append(cluster.n_clusters_)
i = i + 1
if i != len(raw_states_list):
print_info("Used " + str(i) + "/" + str(len(raw_states_list))
+ " Measurements for state clustering. "
"Others did not recognize number of states correctly.")
num_states = np.argmax(np.bincount(num_cluster_list))
resulting_sequence = [None] * num_raw_states
i = 0
for x in resulting_sequence:
j = 0
test_list = []
for arr in cluster_labels_list:
if num_cluster_list[j] != num_states:
j = j + 1
else:
test_list.append(arr[i])
j = j + 1
resulting_sequence[i] = np.argmax(np.bincount(test_list))
i = i + 1
print(resulting_sequence)
# TODO: TESTING PURPOSES
exit()
elif ".tar" in opt_filename:
# open with dfatool
raw_data_args = list()
raw_data_args.append(opt_filename)
raw_data = RawData(
raw_data_args, with_traces=True
)
print_info("Preprocessing file. Depending on its size, this could take a while.")
preprocessed_data = raw_data.get_preprocessed_data()
print_info("File fully preprocessed")
# TODO: Mal schauen, wie ich das mache. Erstmal nur mit json
else:
print_error("Unknown dataformat")
sys.exit(2)
# print(tx_data[1]['parameter'])
# # parse json to array for PELT
# signal = np.array(tx_data[1]['offline'][0]['uW'])
#
# for i in range(0, len(signal)):
# signal[i] = signal[i]/1000
# bkps = calc_pelt(signal, model=opt_model, range_max=opt_range_max, num_processes=opt_num_processes, jump=opt_jump, S=opt_S)
# fig, ax = rpt.display(signal, bkps)
# plt.xlabel('Time [us]')
# plt.ylabel('Power [mW]')
# plt.show()
|