1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
#!/usr/bin/env python3
import getopt
import plotter
import re
import sys
from dfatool import EnergyModel, RawData, soft_cast_int
opts = {}
def print_model_quality(results):
for state_or_tran in results.keys():
print()
for key, result in results[state_or_tran].items():
if 'smape' in result:
print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
state_or_tran, key, result['smape'], result['mae']))
else:
print('{:20s} {:15s} {:.0f}'.format(
state_or_tran, key, result['mae']))
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0].keys():
for key in result_lists[0][state_or_tran].keys():
buf = '{:20s} {:15s}'.format(state_or_tran, key)
for i, results in enumerate(result_lists):
info = info_list[i]
buf += ' ||| '
if info == None or info(state_or_tran, key):
result = results[state_or_tran][key]
if 'smape' in result:
buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
buf += '{:6} {:9.0f}'.format('', result['mae'])
else:
buf += '{:6}----{:9}'.format('', '')
print(buf)
if __name__ == '__main__':
ignored_trace_indexes = None
discard_outliers = None
function_override = {}
try:
raw_opts, args = getopt.getopt(sys.argv[1:], "",
'plot ignored-trace-indexes= discard-outliers= function-override='.split(' '))
for option, parameter in raw_opts:
optname = re.sub(r'^--', '', option)
opts[optname] = parameter
if 'ignored-trace-indexes' in opts:
ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
if 0 in ignored_trace_indexes:
print('[E] arguments to --ignored-trace-indexes start from 1')
if 'discard-outliers' in opts:
discard_outliers = float(opts['discard-outliers'])
if 'function-override' in opts:
for function_desc in opts['function-override'].split(';'):
state_or_tran, attribute, *function_str = function_desc.split(' ')
function_override[(state_or_tran, attribute)] = ' '.join(function_str)
except getopt.GetoptError as err:
print(err)
sys.exit(2)
raw_data = RawData(args)
preprocessed_data = raw_data.get_preprocessed_data()
model = EnergyModel(preprocessed_data,
ignore_trace_indexes = ignored_trace_indexes,
discard_outliers = discard_outliers,
function_override = function_override)
print('--- simple static model ---')
static_model = model.get_static()
#for state in model.states():
# print('{:10s}: {:.0f} µW ({:.2f})'.format(
# state,
# static_model(state, 'power'),
# model.generic_param_dependence_ratio(state, 'power')))
# for param in model.parameters():
# print('{:10s} dependence on {:15s}: {:.2f}'.format(
# '',
# param,
# model.param_dependence_ratio(state, 'power', param)))
#for trans in model.transitions():
# print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
# trans, static_model(trans, 'energy'),
# static_model(trans, 'rel_energy_prev'),
# static_model(trans, 'rel_energy_next'),
# model.generic_param_dependence_ratio(trans, 'energy'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
# print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
static_quality = model.assess(static_model)
print('--- LUT ---')
lut_model = model.get_param_lut()
lut_quality = model.assess(lut_model)
print('--- param model ---')
param_model, param_info = model.get_fitted()
for state in model.states():
for attribute in ['power']:
if param_info(state, attribute):
print('{:10s}: {}'.format(state, param_info(state, attribute)['function']._model_str))
print('{:10s} {}'.format('', param_info(state, attribute)['function']._regression_args))
for trans in model.transitions():
for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
if param_info(trans, attribute):
print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str))
print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args))
analytic_quality = model.assess(param_model)
model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
sys.exit(0)
|