1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
from dfatool import AnalyticFunction
def _parse_function(input_function):
if type('input_function') == 'str':
raise NotImplemented
if type('input_function') == 'function':
return 'raise ValueError', input_function
raise ValueError('Function description must be provided as string or function')
def _dict_to_list(input_dict):
return [input_dict[x] for x in sorted(input_dict.keys())]
class Transition:
def __init__(self, orig_state, dest_state, name,
energy = 0, energy_function = None,
duration = 0, duration_function = None,
timeout = 0, timeout_function = None,
is_interrupt = False,
arguments = [], param_update_function = None,
arg_to_param_map = None):
self.name = name
self.origin = orig_state
self.destination = dest_state
self.energy = energy
self.energy_function = energy_function
self.duration = duration
self.duration_function = duration_function
self.timeout = timeout
self.timeout_function = timeout_function
self.is_interrupt = is_interrupt
self.arguments = arguments.copy()
self.param_update_function = param_update_function
self.arg_to_param_map = arg_to_param_map
def get_duration(self, param_dict = {}, args = []):
if self.duration_function:
return self.duration_function.eval(_dict_to_list(param_dict), args)
return self.duration
def get_energy(self, param_dict = {}, args = []):
if self.energy_function:
return self.energy_function.eval(_dict_to_list(param_dict), args)
return self.energy
def get_timeout(self, param_dict = {}):
if self.timeout_function:
return self.timeout_function.eval(_dict_to_list(param_dict))
return self.timeout
def get_params_after_transition(self, param_dict, args = []):
if self.param_update_function:
return self.param_update_function(param_dict, args)
if self.arg_to_param_map:
ret = param_dict.copy()
for k, v in self.arg_to_param_map.items():
ret[k] = args[v]
return ret
return param_dict
class State:
def __init__(self, name, power = 0, power_function = None):
self.name = name
self.power = power
self.power_function = power_function
self.outgoing_transitions = {}
"""@classmethod
def from_json(cls, serialized_state):
if 'power' in serialized_state:
cls.power = serialized_state['power']['static']
if 'function' in serialized_state:
cls.power_function = """
def add_outgoing_transition(self, new_transition):
self.outgoing_transitions[new_transition.name] = new_transition
def get_energy(self, duration, param_dict = {}):
if self.power_function:
return self.power_function.eval(_dict_to_list(param_dict)) * duration
return self.power * duration
def get_transition(self, transition_name):
return self.outgoing_transitions[transition_name]
def has_interrupt_transitions(self):
for trans in self.outgoing_transitions.values():
if trans.is_interrupt:
return True
return False
def get_next_interrupt(self, parameters):
interrupts = filter(lambda x: x.is_interrupt, self.outgoing_transitions.values())
interrupts = sorted(interrupts, key = lambda x: x.get_timeout(parameters))
return interrupts[0]
def dfs(self, depth):
if depth == 0:
for trans in self.outgoing_transitions.values():
yield [trans.name]
else:
for trans in self.outgoing_transitions.values():
for suffix in trans.destination.dfs(depth - 1):
new_suffix = [trans.name]
new_suffix.extend(suffix)
yield new_suffix
def _json_function_to_analytic_function(base, attribute, parameters):
if attribute in base and 'function' in base[attribute]:
base = base[attribute]['function']
return AnalyticFunction(base['raw'], parameters, 0, regression_args = base['regression_args'])
return None
def _json_get_static(base, attribute):
if attribute in base:
return base[attribute]['static']
return 0
class PTA:
def __init__(self, state_names = [], parameters = [], initial_param_values = None):
self.states = dict([[state_name, State(state_name)] for state_name in state_names])
self.parameters = parameters.copy()
if initial_param_values:
self.initial_param_values = initial_param_values.copy()
else:
self.initial_param_values = [None for x in self.parameters]
self.transitions = []
if not 'UNINITIALIZED' in state_names:
self.states['UNINITIALIZED'] = State('UNINITIALIZED')
@classmethod
def from_json(cls, json_input):
kwargs = {}
for key in ('state_names', 'parameters', 'initial_param_values'):
if key in json_input:
kwargs[key] = json_input[key]
pta = cls(**kwargs)
for name, state in json_input['states'].items():
power_function = _json_function_to_analytic_function(state, 'power', pta.parameters)
pta.add_state(name, power = _json_get_static(state, 'power'), power_function = power_function)
for transition in json_input['transitions']:
duration_function = _json_function_to_analytic_function(transition, 'duration', pta.parameters)
energy_function = _json_function_to_analytic_function(transition, 'energy', pta.parameters)
timeout_function = _json_function_to_analytic_function(transition, 'timeout', pta.parameters)
pta.add_transition(transition['origin'], transition['destination'],
transition['name'],
duration = _json_get_static(transition, 'duration'),
energy = _json_get_static(transition, 'energy'),
timeout = _json_get_static(transition, 'timeout')
)
return pta
def add_state(self, state_name, **kwargs):
if 'power_function' in kwargs and type(kwargs['power_function']) != AnalyticFunction:
kwargs['power_function'] = AnalyticFunction(kwargs['power_function'],
self.parameters, 0)
self.states[state_name] = State(state_name, **kwargs)
def add_transition(self, orig_state, dest_state, function_name, **kwargs):
orig_state = self.states[orig_state]
dest_state = self.states[dest_state]
for key in ('duration_function', 'energy_function', 'timeout_function'):
if key in kwargs and type(kwargs[key]) != AnalyticFunction:
kwargs[key] = AnalyticFunction(kwargs[key], self.parameters, 0)
new_transition = Transition(orig_state, dest_state, function_name, **kwargs)
self.transitions.append(new_transition)
orig_state.add_outgoing_transition(new_transition)
def dfs(self, depth = 10, orig_state = 'UNINITIALIZED'):
return self.states[orig_state].dfs(depth)
def simulate(self, trace, orig_state = 'UNINITIALIZED'):
total_duration = 0.
total_energy = 0.
state = self.states[orig_state]
param_dict = dict([[self.parameters[i], self.initial_param_values[i]] for i in range(len(self.parameters))])
for function in trace:
function_name = function[0]
function_args = function[1 : ]
if function_name == 'sleep':
duration = function_args[0]
total_energy += state.get_energy(duration, param_dict)
total_duration += duration
else:
transition = state.get_transition(function_name)
total_duration += transition.get_duration(param_dict, function_args)
total_energy += transition.get_energy(param_dict, function_args)
param_dict = transition.get_params_after_transition(param_dict, function_args)
state = transition.destination
while (state.has_interrupt_transitions()):
transition = state.get_next_interrupt(param_dict)
duration = transition.get_timeout(param_dict)
total_duration += duration
total_energy += state.get_energy(duration, param_dict)
param_dict = transition.get_params_after_transition(param_dict)
state = transition.destination
return total_energy, total_duration, state, param_dict
|