summaryrefslogtreecommitdiff
path: root/lib/data_parameters.py
blob: 406d0a5d1d81e512ebcd8e3bd9728b4894982fff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Utilities for parameter extraction from data layout.

Parameters include the amount of keys, length of strings (both keys and values),
length of lists, ane more.
"""

import numpy as np
import ubjson

def _string_value_length(json):
    if type(json) == str:
        return len(json)

    if type(json) == dict:
        return sum(map(_string_value_length, json.values()))

    if type(json) == list:
        return sum(map(_string_value_length, json))

    return 0

# TODO distinguish between int and uint, which is not visible from the
# data value alone
def _int_value_length(json):
    if type(json) == int:
        if json < 256:
            return 1
        if json < 65536:
            return 2
        return 4

    if type(json) == dict:
        return sum(map(_int_value_length, json.values()))

    if type(json) == list:
        return sum(map(_int_value_length, json))

    return 0

def _string_key_length(json):
    if type(json) == dict:
        return sum(map(len, json.keys())) + sum(map(_string_key_length, json.values()))

    return 0

def _num_keys(json):
    if type(json) == dict:
        return len(json.keys()) + sum(map(_num_keys, json.values()))

    return 0

def _num_of_type(json, wanted_type):
    ret = 0
    if type(json) == wanted_type:
        ret = 1

    if type(json) == dict:
        ret += sum(map(lambda x: _num_of_type(x, wanted_type), json.values()))

    if type(json) == list:
        ret += sum(map(lambda x: _num_of_type(x, wanted_type), json))

    return ret

def json_to_param(json):
    """Return numeric parameters describing the structure of JSON data."""

    ret = dict()

    ret['strlen_keys'] = _string_key_length(json)
    ret['strlen_values'] = _string_value_length(json)
    ret['bytelen_int'] = _int_value_length(json)
    ret['num_int'] = _num_of_type(json, int)
    ret['num_float'] = _num_of_type(json, float)
    ret['num_str'] = _num_of_type(json, str)

    return ret


class Protolog:

    idem = lambda x: x
    datamap = [
        ['bss_nop', 'bss_size_nop', idem],
        ['bss_ser', 'bss_size_ser', idem],
        ['bss_serdes', 'bss_size_serdes', idem],
        ['cycles_ser', 'cycles', lambda x: int(np.mean(x['ser']) - np.mean(x['nop']))],
        ['cycles_des', 'cycles', lambda x: int(np.mean(x['des']) - np.mean(x['nop']))],
        ['cycles_enc', 'cycles', lambda x: int(np.mean(x['enc']) - np.mean(x['nop']))],
        ['cycles_dec', 'cycles', lambda x: int(np.mean(x['dec']) - np.mean(x['nop']))],
        ['cycles_encser', 'cycles', lambda x:
            int(np.mean(x['ser']) + np.mean(x['enc']) - 2 * np.mean(x['nop']))
        ],
        ['cycles_desdec', 'cycles', lambda x:
            int(np.mean(x['des']) + np.mean(x['dec']) - 2 * np.mean(x['nop']))
        ],
        ['cycles_ser_arr', 'cycles', lambda x: np.array(x['ser']) - np.mean(x['nop'])],
        ['cycles_des_arr', 'cycles', lambda x: np.array(x['des']) - np.mean(x['nop'])],
        ['cycles_enc_arr', 'cycles', lambda x: np.array(x['enc']) - np.mean(x['nop'])],
        ['cycles_dec_arr', 'cycles', lambda x: np.array(x['dec']) - np.mean(x['nop'])],
        ['data_nop', 'data_size_nop', idem],
        ['data_ser', 'data_size_ser', idem],
        ['data_serdes', 'data_size_serdes', idem],
        ['heap_ser', 'heap_usage_ser', idem],
        ['heap_des', 'heap_usage_des', idem],
        ['serialized_size', 'serialized_size', idem],
        ['stack_alloc_ser', 'stack_online_ser', lambda x: x['allocated']],
        ['stack_set_ser', 'stack_online_ser', lambda x: x['used']],
        ['stack_alloc_des', 'stack_online_des', lambda x: x['allocated']],
        ['stack_set_des', 'stack_online_des', lambda x: x['used']],
        ['text_nop', 'text_size_nop', idem],
        ['text_ser', 'text_size_ser', idem],
        ['text_serdes', 'text_size_serdes', idem],
    ]

    def __init__(self, logfile):
        with open(logfile, 'rb') as f:
            self.data = ubjson.load(f)
        self.libraries = set()
        self.architectures = set()
        self.aggregate = dict()

        for arch_lib in self.data.keys():
            arch, lib, libopts = arch_lib.split(':')
            library = lib + ':' + libopts
            for benchmark in self.data[arch_lib].keys():
                for benchmark_item in self.data[arch_lib][benchmark].keys():
                    subv = self.data[arch_lib][benchmark][benchmark_item]
                    for aggregate_label, data_label, getter in Protolog.datamap:
                        try:
                            self.add_datapoint(arch, library, (benchmark, benchmark_item), subv, aggregate_label, data_label, getter)
                        except KeyError:
                            pass

        for key in self.aggregate.keys():
            for arch in self.aggregate[key].keys():
                for lib, val in self.aggregate[key][arch].items():
                    try:
                        val['total_dmem_ser'] = val['stack_alloc_ser']
                        val['total_dmem_ser'] += val['heap_ser']
                    except KeyError:
                        pass
                    try:
                        val['total_dmem_des'] = val['stack_alloc_des']
                        val['total_dmem_des'] += val['heap_des']
                    except KeyError:
                        pass
                    try:
                        val['total_smem_ser'] = val['data_ser'] + val['bss_ser'] - val['data_nop'] - val['bss_nop']
                        val['total_smem_serdes'] = val['data_serdes'] + val['bss_serdes'] - val['data_nop'] - val['bss_nop']
                    except KeyError:
                        pass
                    try:
                        val['total_mem_ser'] = val['total_smem_ser'] + val['total_dmem_ser']
                    except KeyError:
                        pass
                    try:
                        val['text_serdes_delta'] = val['text_serdes'] - val['text_nop']
                    except KeyError:
                        pass
                    #try:
                    #    val['text_ser'] = val['text_nopser'] - val['text_nop']
                    #    val['text_des'] = val['text_nopserdes'] - val['text_nopser'] # use with care, probably bogus
                    #    val['text_serdes'] = val['text_nopserdes'] - val['text_nop']
                    #except KeyError:
                    #    pass

    def add_datapoint(self, arch, lib, key, value, aggregate_label, data_label, getter):
        if data_label in value and 'v' in value[data_label]:
            self.architectures.add(arch)
            self.libraries.add(lib)
            if not key in self.aggregate:
                self.aggregate[key] = dict()
            if not arch in self.aggregate[key]:
                self.aggregate[key][arch] = dict()
            if not lib in self.aggregate[key][arch]:
                self.aggregate[key][arch][lib] = dict()
            self.aggregate[key][arch][lib][aggregate_label] = getter(value[data_label]['v'])