summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
blob: 1e38907b080072d6b90d91d05f6a1822484e766e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
#!/usr/bin/env python3

import csv
import io
import json
import logging
import numpy as np
import os
import re
from scipy import optimize
from sklearn.metrics import r2_score
import struct
import tarfile
import hashlib
from multiprocessing import Pool
from .functions import analytic
from .functions import AnalyticFunction
from .parameters import ParamStats
from .utils import (
    is_numeric,
    soft_cast_int,
    param_slice_eq,
    remove_index_from_tuple,
)
from .utils import by_name_to_by_param, match_parameter_values, running_mean

logger = logging.getLogger(__name__)

try:
    from .pubcode import Code128
    import zbar

    zbar_available = True
except ImportError:
    zbar_available = False


arg_support_enabled = True


def gplearn_to_function(function_str: str):
    """
    Convert gplearn-style function string to Python function.

    Takes a function string like "mul(add(X0, X1), X2)" and returns
    a Python function implementing the specified behaviour,
    e.g. "lambda x, y, z: (x + y) * z".

    Supported functions:
    add  --  x + y
    sub  --  x - y
    mul  --  x * y
    div  --  x / y if |y| > 0.001, otherwise 1
    sqrt --  sqrt(|x|)
    log  --  log(|x|) if |x| > 0.001, otherwise 0
    inv  --  1 / x if |x| > 0.001, otherwise 0
    """
    eval_globals = {
        "add": lambda x, y: x + y,
        "sub": lambda x, y: x - y,
        "mul": lambda x, y: x * y,
        "div": lambda x, y: np.divide(x, y) if np.abs(y) > 0.001 else 1.0,
        "sqrt": lambda x: np.sqrt(np.abs(x)),
        "log": lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 0.0,
        "inv": lambda x: 1.0 / x if np.abs(x) > 0.001 else 0.0,
    }

    last_arg_index = 0
    for i in range(0, 100):
        if function_str.find("X{:d}".format(i)) >= 0:
            last_arg_index = i

    arg_list = []
    for i in range(0, last_arg_index + 1):
        arg_list.append("X{:d}".format(i))

    eval_str = "lambda {}, *whatever: {}".format(",".join(arg_list), function_str)
    logger.debug(eval_str)
    return eval(eval_str, eval_globals)


def append_if_set(aggregate: dict, data: dict, key: str):
    """Append data[key] to aggregate if key in data."""
    if key in data:
        aggregate.append(data[key])


def mean_or_none(arr):
    """
    Compute mean of NumPy array `arr`, return -1 if empty.

    :param arr: 1-Dimensional NumPy array
    """
    if len(arr):
        return np.mean(arr)
    return -1


def aggregate_measures(aggregate: float, actual: list) -> dict:
    """
    Calculate error measures for model value on data list.

    arguments:
    aggregate -- model value (float or int)
    actual -- real-world / reference values (list of float or int)

    return value:
    See regression_measures
    """
    aggregate_array = np.array([aggregate] * len(actual))
    return regression_measures(aggregate_array, np.array(actual))


def regression_measures(predicted: np.ndarray, actual: np.ndarray):
    """
    Calculate error measures by comparing model values to reference values.

    arguments:
    predicted -- model values (np.ndarray)
    actual -- real-world / reference values (np.ndarray)

    Returns a dict containing the following measures:
    mae -- Mean Absolute Error
    mape -- Mean Absolute Percentage Error,
            if all items in actual are non-zero (NaN otherwise)
    smape -- Symmetric Mean Absolute Percentage Error,
             if no 0,0-pairs are present in actual and predicted (NaN otherwise)
    msd -- Mean Square Deviation
    rmsd -- Root Mean Square Deviation
    ssr -- Sum of Squared Residuals
    rsq -- R^2 measure, see sklearn.metrics.r2_score
    count -- Number of values
    """
    if type(predicted) != np.ndarray:
        raise ValueError("first arg must be ndarray, is {}".format(type(predicted)))
    if type(actual) != np.ndarray:
        raise ValueError("second arg must be ndarray, is {}".format(type(actual)))
    deviations = predicted - actual
    # mean = np.mean(actual)
    if len(deviations) == 0:
        return {}
    measures = {
        "mae": np.mean(np.abs(deviations), dtype=np.float64),
        "msd": np.mean(deviations ** 2, dtype=np.float64),
        "rmsd": np.sqrt(np.mean(deviations ** 2), dtype=np.float64),
        "ssr": np.sum(deviations ** 2, dtype=np.float64),
        "rsq": r2_score(actual, predicted),
        "count": len(actual),
    }

    # rsq_quotient = np.sum((actual - mean)**2, dtype=np.float64) * np.sum((predicted - mean)**2, dtype=np.float64)

    if np.all(actual != 0):
        measures["mape"] = np.mean(np.abs(deviations / actual)) * 100  # bad measure
    else:
        measures["mape"] = np.nan
    if np.all(np.abs(predicted) + np.abs(actual) != 0):
        measures["smape"] = (
            np.mean(np.abs(deviations) / ((np.abs(predicted) + np.abs(actual)) / 2))
            * 100
        )
    else:
        measures["smape"] = np.nan
    # if np.all(rsq_quotient != 0):
    #    measures['rsq'] = (np.sum((actual - mean) * (predicted - mean), dtype=np.float64)**2) / rsq_quotient

    return measures


class KeysightCSV:
    """Simple loader for Keysight CSV data, as exported by the windows software."""

    def __init__(self):
        """Create a new KeysightCSV object."""
        pass

    def load_data(self, filename: str):
        """
        Load log data from filename, return timestamps and currents.

        Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
        """
        with open(filename) as f:
            for i, _ in enumerate(f):
                pass
            timestamps = np.ndarray((i - 3), dtype=float)
            currents = np.ndarray((i - 3), dtype=float)
        # basically seek back to start
        with open(filename) as f:
            for _ in range(4):
                next(f)
            reader = csv.reader(f, delimiter=",")
            for i, row in enumerate(reader):
                timestamps[i] = float(row[0])
                currents[i] = float(row[2]) * -1
        return timestamps, currents


def _xv_partitions_kfold(length, k=10):
    """
    Return k pairs of training and validation sets for k-fold cross-validation on `length` items.

    In k-fold cross-validation, every k-th item is used for validation and the remainder is used for training.
    As there are k ways to do this (items 0, k, 2k, ... vs. items 1, k+1, 2k+1, ... etc), this function returns k pairs of training and validation set.

    Note that this function operates on indices, not data.
    """
    pairs = []
    num_slices = k
    indexes = np.arange(length)
    for i in range(num_slices):
        training = np.delete(indexes, slice(i, None, num_slices))
        validation = indexes[i::num_slices]
        pairs.append((training, validation))
    return pairs


def _xv_partition_montecarlo(length):
    """
    Return training and validation set for Monte Carlo cross-validation on `length` items.

    This function operates on indices, not data. It randomly partitions range(length) into a list of training indices and a list of validation indices.

    The training set contains 2/3 of all indices; the validation set consits of the remaining 1/3.

    Example: 9 items -> training = [7, 3, 8, 0, 4, 2], validation = [ 1, 6, 5]
    """
    shuffled = np.random.permutation(np.arange(length))
    border = int(length * float(2) / 3)
    training = shuffled[:border]
    validation = shuffled[border:]
    return (training, validation)


class CrossValidator:
    """
    Cross-Validation helper for model generation.

    Given a set of measurements and a model class, it will partition the
    data into training and validation sets, train the model on the training
    set, and assess its quality on the validation set. This is repeated
    several times depending on cross-validation algorithm and configuration.
    Reports the mean model error over all cross-validation runs.
    """

    def __init__(self, model_class, by_name, parameters, arg_count):
        """
        Create a new CrossValidator object.

        Does not perform cross-validation yet.

        arguments:
        model_class -- model class/type used for model synthesis,
            e.g. PTAModel or AnalyticModel. model_class must have a
            constructor accepting (by_name, parameters, arg_count)
            and provide an `assess` method.
        by_name -- measurements aggregated by state/transition/function/... name.
            Layout: by_name[name][attribute] = list of data. Additionally,
            by_name[name]['attributes'] must be set to the list of attributes,
            e.g. ['power'] or ['duration', 'energy'].
        """
        self.model_class = model_class
        self.by_name = by_name
        self.names = sorted(by_name.keys())
        self.parameters = sorted(parameters)
        self.arg_count = arg_count

    def kfold(self, model_getter, k=10):
        """
        Perform k-fold cross-validation and return average model quality.

        The by_name data is divided into 1-1/k training and 1/k validation in a deterministic manner.
        After creating a model for the training set, the
        model type returned by model_getter is evaluated on the validation set.
        This is repeated k times; the average of all measures is returned to the user.

        arguments:
        model_getter -- function with signature (model_object) -> model,
            e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
            model with automatic parameter detection.
        k -- step size for k-fold cross-validation. The validation set contains 100/k % of data.

        return value:
        dict of model quality measures.
        {
            'by_name' : {
                for each name: {
                    for each attribute: {
                        'mae' : mean of all mean absolute errors
                        'mae_list' : list of the individual MAE values encountered during cross-validation
                        'smape' : mean of all symmetric mean absolute percentage errors
                        'smape_list' : list of the individual SMAPE values encountered during cross-validation
                    }
                }
            }
        }
        """

        # training / validation subsets for each state and transition
        subsets_by_name = dict()
        training_and_validation_sets = list()

        for name in self.names:
            sample_count = len(self.by_name[name]["param"])
            subsets_by_name[name] = list()
            subsets_by_name[name] = _xv_partitions_kfold(sample_count, k)

        for i in range(k):
            training_and_validation_sets.append(dict())
            for name in self.names:
                training_and_validation_sets[i][name] = subsets_by_name[name][i]

        return self._generic_xv(model_getter, training_and_validation_sets)

    def montecarlo(self, model_getter, count=200):
        """
        Perform Monte Carlo cross-validation and return average model quality.

        The by_name data is randomly divided into 2/3 training and 1/3
        validation. After creating a model for the training set, the
        model type returned by model_getter is evaluated on the validation set.
        This is repeated count times (defaulting to 200); the average of all
        measures is returned to the user.

        arguments:
        model_getter -- function with signature (model_object) -> model,
            e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
            model with automatic parameter detection.
        count -- number of validation runs to perform, defaults to 200

        return value:
        dict of model quality measures.
        {
            'by_name' : {
                for each name: {
                    for each attribute: {
                        'mae' : mean of all mean absolute errors
                        'mae_list' : list of the individual MAE values encountered during cross-validation
                        'smape' : mean of all symmetric mean absolute percentage errors
                        'smape_list' : list of the individual SMAPE values encountered during cross-validation
                    }
                }
            }
        }
        """

        # training / validation subsets for each state and transition
        subsets_by_name = dict()
        training_and_validation_sets = list()

        for name in self.names:
            sample_count = len(self.by_name[name]["param"])
            subsets_by_name[name] = list()
            for _ in range(count):
                subsets_by_name[name].append(_xv_partition_montecarlo(sample_count))

        for i in range(count):
            training_and_validation_sets.append(dict())
            for name in self.names:
                training_and_validation_sets[i][name] = subsets_by_name[name][i]

        return self._generic_xv(model_getter, training_and_validation_sets)

    def _generic_xv(self, model_getter, training_and_validation_sets):
        ret = {"by_name": dict()}

        for name in self.names:
            ret["by_name"][name] = dict()
            for attribute in self.by_name[name]["attributes"]:
                ret["by_name"][name][attribute] = {
                    "mae_list": list(),
                    "smape_list": list(),
                }

        for training_and_validation_by_name in training_and_validation_sets:
            res = self._single_xv(model_getter, training_and_validation_by_name)
            for name in self.names:
                for attribute in self.by_name[name]["attributes"]:
                    ret["by_name"][name][attribute]["mae_list"].append(
                        res["by_name"][name][attribute]["mae"]
                    )
                    ret["by_name"][name][attribute]["smape_list"].append(
                        res["by_name"][name][attribute]["smape"]
                    )

        for name in self.names:
            for attribute in self.by_name[name]["attributes"]:
                ret["by_name"][name][attribute]["mae"] = np.mean(
                    ret["by_name"][name][attribute]["mae_list"]
                )
                ret["by_name"][name][attribute]["smape"] = np.mean(
                    ret["by_name"][name][attribute]["smape_list"]
                )

        return ret

    def _single_xv(self, model_getter, tv_set_dict):
        training = dict()
        validation = dict()
        for name in self.names:
            training[name] = {"attributes": self.by_name[name]["attributes"]}
            validation[name] = {"attributes": self.by_name[name]["attributes"]}

            if "isa" in self.by_name[name]:
                training[name]["isa"] = self.by_name[name]["isa"]
                validation[name]["isa"] = self.by_name[name]["isa"]

            training_subset, validation_subset = tv_set_dict[name]

            for attribute in self.by_name[name]["attributes"]:
                self.by_name[name][attribute] = np.array(self.by_name[name][attribute])
                training[name][attribute] = self.by_name[name][attribute][
                    training_subset
                ]
                validation[name][attribute] = self.by_name[name][attribute][
                    validation_subset
                ]

            # We can't use slice syntax for 'param', which may contain strings and other odd values
            training[name]["param"] = list()
            validation[name]["param"] = list()
            for idx in training_subset:
                training[name]["param"].append(self.by_name[name]["param"][idx])
            for idx in validation_subset:
                validation[name]["param"].append(self.by_name[name]["param"][idx])

        training_data = self.model_class(training, self.parameters, self.arg_count)
        training_model = model_getter(training_data)
        validation_data = self.model_class(validation, self.parameters, self.arg_count)

        return validation_data.assess(training_model)


def _preprocess_mimosa(measurement):
    setup = measurement["setup"]
    mim = MIMOSA(
        float(setup["mimosa_voltage"]),
        int(setup["mimosa_shunt"]),
        with_traces=measurement["with_traces"],
    )
    try:
        charges, triggers = mim.load_data(measurement["content"])
        trigidx = mim.trigger_edges(triggers)
    except EOFError as e:
        mim.errors.append("MIMOSA logfile error: {}".format(e))
        trigidx = list()

    if len(trigidx) == 0:
        mim.errors.append("MIMOSA log has no triggers")
        return {
            "fileno": measurement["fileno"],
            "info": measurement["info"],
            "has_datasource_error": len(mim.errors) > 0,
            "datasource_errors": mim.errors,
            "expected_trace": measurement["expected_trace"],
            "repeat_id": measurement["repeat_id"],
        }

    cal_edges = mim.calibration_edges(
        running_mean(mim.currents_nocal(charges[0 : trigidx[0]]), 10)
    )
    calfunc, caldata = mim.calibration_function(charges, cal_edges)
    vcalfunc = np.vectorize(calfunc, otypes=[np.float64])

    processed_data = {
        "fileno": measurement["fileno"],
        "info": measurement["info"],
        "triggers": len(trigidx),
        "first_trig": trigidx[0] * 10,
        "calibration": caldata,
        "energy_trace": mim.analyze_states(charges, trigidx, vcalfunc),
        "has_datasource_error": len(mim.errors) > 0,
        "datasource_errors": mim.errors,
    }

    for key in ["expected_trace", "repeat_id"]:
        if key in measurement:
            processed_data[key] = measurement[key]

    return processed_data


def _preprocess_etlog(measurement):
    setup = measurement["setup"]
    etlog = EnergyTraceLog(
        float(setup["voltage"]),
        int(setup["state_duration"]),
        measurement["transition_names"],
        with_traces=measurement["with_traces"],
    )
    try:
        etlog.load_data(measurement["content"])
        states_and_transitions = etlog.analyze_states(
            measurement["expected_trace"], measurement["repeat_id"]
        )
    except EOFError as e:
        etlog.errors.append("EnergyTrace logfile error: {}".format(e))

    processed_data = {
        "fileno": measurement["fileno"],
        "repeat_id": measurement["repeat_id"],
        "info": measurement["info"],
        "expected_trace": measurement["expected_trace"],
        "energy_trace": states_and_transitions,
        "has_datasource_error": len(etlog.errors) > 0,
        "datasource_errors": etlog.errors,
    }

    return processed_data


class TimingData:
    """
    Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.

    Excpets a specific trace format and UART log output (as produced by
    generate-dfa-benchmark.py). Prunes states from output. (TODO)
    """

    def __init__(self, filenames):
        """
        Create a new TimingData object.

        Each filenames element corresponds to a measurement run.
        """
        self.filenames = filenames.copy()
        self.traces_by_fileno = []
        self.setup_by_fileno = []
        self.preprocessed = False
        self._parameter_names = None
        self.version = 0

    def _concatenate_analyzed_traces(self):
        self.traces = []
        for trace_group in self.traces_by_fileno:
            for trace in trace_group:
                # TimingHarness logs states, but does not aggregate any data for them at the moment -> throw all states away
                transitions = list(
                    filter(lambda x: x["isa"] == "transition", trace["trace"])
                )
                self.traces.append(
                    {"id": trace["id"], "trace": transitions,}
                )
        for i, trace in enumerate(self.traces):
            trace["orig_id"] = trace["id"]
            trace["id"] = i
            for log_entry in trace["trace"]:
                paramkeys = sorted(log_entry["parameter"].keys())
                if "param" not in log_entry["offline_aggregates"]:
                    log_entry["offline_aggregates"]["param"] = list()
                if "duration" in log_entry["offline_aggregates"]:
                    for i in range(len(log_entry["offline_aggregates"]["duration"])):
                        paramvalues = list()
                        for paramkey in paramkeys:
                            if type(log_entry["parameter"][paramkey]) is list:
                                paramvalues.append(
                                    soft_cast_int(log_entry["parameter"][paramkey][i])
                                )
                            else:
                                paramvalues.append(
                                    soft_cast_int(log_entry["parameter"][paramkey])
                                )
                        if arg_support_enabled and "args" in log_entry:
                            paramvalues.extend(map(soft_cast_int, log_entry["args"]))
                        log_entry["offline_aggregates"]["param"].append(paramvalues)

    def _preprocess_0(self):
        for filename in self.filenames:
            with open(filename, "r") as f:
                log_data = json.load(f)
                self.traces_by_fileno.extend(log_data["traces"])
        self._concatenate_analyzed_traces()

    def get_preprocessed_data(self):
        """
        Return a list of DFA traces annotated with timing and parameter data.

        Suitable for the PTAModel constructor.
        See PTAModel(...) docstring for format details.
        """
        if self.preprocessed:
            return self.traces
        if self.version == 0:
            self._preprocess_0()
        self.preprocessed = True
        return self.traces


def sanity_check_aggregate(aggregate):
    for key in aggregate:
        if "param" not in aggregate[key]:
            raise RuntimeError("aggregate[{}][param] does not exist".format(key))
        if "attributes" not in aggregate[key]:
            raise RuntimeError("aggregate[{}][attributes] does not exist".format(key))
        for attribute in aggregate[key]["attributes"]:
            if attribute not in aggregate[key]:
                raise RuntimeError(
                    "aggregate[{}][{}] does not exist, even though it is contained in aggregate[{}][attributes]".format(
                        key, attribute, key
                    )
                )
            param_len = len(aggregate[key]["param"])
            attr_len = len(aggregate[key][attribute])
            if param_len != attr_len:
                raise RuntimeError(
                    "parameter mismatch: len(aggregate[{}][param]) == {} != len(aggregate[{}][{}]) == {}".format(
                        key, param_len, key, attribute, attr_len
                    )
                )


class RawData:
    """
    Loader for hardware model traces measured with MIMOSA.

    Expects a specific trace format and UART log output (as produced by the
    dfatool benchmark generator). Loads data, prunes bogus measurements, and
    provides preprocessed data suitable for PTAModel. Results are cached on the
    file system, making subsequent loads near-instant.
    """

    def __init__(self, filenames, with_traces=False):
        """
        Create a new RawData object.

        Each filename element corresponds to a measurement run.
        It must be a tar archive with the following contents:

        Version 0:

        * `setup.json`: measurement setup. Must contain the keys `state_duration` (how long each state is active, in ms),
          `mimosa_voltage` (voltage applied to dut, in V), and `mimosa_shunt` (shunt value, in Ohm)
        * `src/apps/DriverEval/DriverLog.json`: PTA traces and parameters for this benchmark.
          Layout: List of traces, each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
          Each trace has an even number of elements, starting with the first state (usually `UNINITIALIZED`) and ending with a transition.
          Each state/transition must have the members `.parameter` (parameter values, empty string or None if unknown), `.isa` ("state" or "transition") and `.name`.
          Each transition must additionally contain `.plan.level` ("user" or "epilogue").
          Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
        * At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
          MIMOSA files are parsed by the `MIMOSA` class.

        Version 1:

        * `ptalog.json`: measurement setup and traces. Contents:
          `.opt.sleep`: state duration
          `.opt.pta`: PTA
          `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
            `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
              Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
              Each transition must additionally contain `.args`
          `.opt.files`: list of coresponding MIMOSA measurements.
            `.opt.files[]` = ['abc123.mim', ...]
          `.opt.configs`: ....
        * MIMOSA log files (`*.mim`) as specified in `.opt.files`

        Version 2:

        * `ptalog.json`: measurement setup and traces. Contents:
          `.opt.sleep`: state duration
          `.opt.pta`: PTA
          `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
            `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
              Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
              Each transition must additionally contain `.args` and `.duration`
              * `.duration`: list of durations, one per repetition
          `.opt.files`: list of coresponding EnergyTrace measurements.
            `.opt.files[]` = ['abc123.etlog', ...]
          `.opt.configs`: ....
        * EnergyTrace log files (`*.etlog`) as specified in `.opt.files`

        If a cached result for a file is available, it is loaded and the file
        is not preprocessed, unless `with_traces` is set.

        tbd
        """
        self.with_traces = with_traces
        self.filenames = filenames.copy()
        self.traces_by_fileno = []
        self.setup_by_fileno = []
        self.version = 0
        self.preprocessed = False
        self._parameter_names = None
        self.ignore_clipping = False
        self.pta = None

        with tarfile.open(filenames[0]) as tf:
            for member in tf.getmembers():
                if member.name == "ptalog.json" and self.version == 0:
                    self.version = 1
                    # might also be version 2
                    # depends on whether *.etlog exists or not
                elif ".etlog" in member.name:
                    self.version = 2
                    break

        self.set_cache_file()
        if not with_traces:
            self.load_cache()

    def set_cache_file(self):
        cache_key = hashlib.sha256("!".join(self.filenames).encode()).hexdigest()
        self.cache_dir = os.path.dirname(self.filenames[0]) + "/cache"
        self.cache_file = "{}/{}.json".format(self.cache_dir, cache_key)

    def load_cache(self):
        if os.path.exists(self.cache_file):
            with open(self.cache_file, "r") as f:
                cache_data = json.load(f)
                self.filenames = cache_data["filenames"]
                self.traces = cache_data["traces"]
                self.preprocessing_stats = cache_data["preprocessing_stats"]
                if "pta" in cache_data:
                    self.pta = cache_data["pta"]
                self.setup_by_fileno = cache_data["setup_by_fileno"]
                self.preprocessed = True

    def save_cache(self):
        if self.with_traces:
            return
        try:
            os.mkdir(self.cache_dir)
        except FileExistsError:
            pass
        with open(self.cache_file, "w") as f:
            cache_data = {
                "filenames": self.filenames,
                "traces": self.traces,
                "preprocessing_stats": self.preprocessing_stats,
                "pta": self.pta,
                "setup_by_fileno": self.setup_by_fileno,
            }
            json.dump(cache_data, f)

    def _state_is_too_short(self, online, offline, state_duration, next_transition):
        # We cannot control when an interrupt causes a state to be left
        if next_transition["plan"]["level"] == "epilogue":
            return False

        # Note: state_duration is stored as ms, not us
        return offline["us"] < state_duration * 500

    def _state_is_too_long(self, online, offline, state_duration, prev_transition):
        # If the previous state was left by an interrupt, we may have some
        # waiting time left over. So it's okay if the current state is longer
        # than expected.
        if prev_transition["plan"]["level"] == "epilogue":
            return False
        # state_duration is stored as ms, not us
        return offline["us"] > state_duration * 1500

    def _measurement_is_valid_2(self, processed_data):
        """
        Check if a dfatool v2 measurement is valid.

        processed_data layout:
        'fileno' : measurement['fileno'],
        'info' : measurement['info'],
        'energy_trace' : etlog.analyze_states()
            A sequence of unnamed, unparameterized states and transitions with
            power and timing data
        'expected_trace' : trace from PTA DFS (with parameter data)
        etlog.analyze_states returns a list of (alternating) states and transitions.
        Each element is a dict containing:
            - isa: 'state' oder 'transition'
            - W_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
            - W_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
            - s: duration

            if isa == 'transition':
            - W_mean_delta_prev: Differenz zwischen W_mean und W_mean des vorherigen Zustands
            - W_mean_delta_next: Differenz zwischen W_mean und W_mean des Folgezustands
        """

        # Check for low-level parser errors
        if processed_data["has_datasource_error"]:
            processed_data["error"] = "; ".join(processed_data["datasource_errors"])
            return False

        # Note that the low-level parser (EnergyTraceLog) already checks
        # whether the transition count is correct

        return True

    def _measurement_is_valid_01(self, processed_data):
        """
        Check if a dfatool v0 or v1 measurement is valid.

        processed_data layout:
        'fileno' : measurement['fileno'],
        'info' : measurement['info'],
        'triggers' : len(trigidx),
        'first_trig' : trigidx[0] * 10,
        'calibration' : caldata,
        'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc)
            A sequence of unnamed, unparameterized states and transitions with
            power and timing data
        'expected_trace' : trace from PTA DFS (with parameter data)
        mim.analyze_states returns a list of (alternating) states and transitions.
        Each element is a dict containing:
            - isa: 'state' oder 'transition'
            - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
            - raw_mean: Mittelwert der Rohwerte
            - raw_std: Standardabweichung der Rohwerte
            - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
            - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
            - us: Dauer

            Nur falls isa == 'transition':
            - timeout: Dauer des vorherigen Zustands
            - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """
        setup = self.setup_by_fileno[processed_data["fileno"]]
        if "expected_trace" in processed_data:
            traces = processed_data["expected_trace"]
        else:
            traces = self.traces_by_fileno[processed_data["fileno"]]
        state_duration = setup["state_duration"]

        # Check MIMOSA error
        if processed_data["has_datasource_error"]:
            processed_data["error"] = "; ".join(processed_data["datasource_errors"])
            return False

        # Check trigger count
        sched_trigger_count = 0
        for run in traces:
            sched_trigger_count += len(run["trace"])
        if sched_trigger_count != processed_data["triggers"]:
            processed_data[
                "error"
            ] = "got {got:d} trigger edges, expected {exp:d}".format(
                got=processed_data["triggers"], exp=sched_trigger_count
            )
            return False
        # Check state durations. Very short or long states can indicate a
        # missed trigger signal which wasn't detected due to duplicate
        # triggers elsewhere
        online_datapoints = []
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run["trace"])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = processed_data["energy_trace"][offline_idx]
            online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]

            if self._parameter_names is None:
                self._parameter_names = sorted(online_trace_part["parameter"].keys())

            if sorted(online_trace_part["parameter"].keys()) != self._parameter_names:
                processed_data[
                    "error"
                ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}".format(
                    off_idx=offline_idx,
                    on_idx=online_run_idx,
                    on_sub=online_trace_part_idx,
                    on_name=online_trace_part["name"],
                    param_want=self._parameter_names,
                    param_is=sorted(online_trace_part["parameter"].keys()),
                )

            if online_trace_part["isa"] != offline_trace_part["isa"]:
                processed_data[
                    "error"
                ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}".format(
                    off_idx=offline_idx,
                    on_idx=online_run_idx,
                    on_sub=online_trace_part_idx,
                    on_name=online_trace_part["name"],
                    off_isa=offline_trace_part["isa"],
                    on_isa=online_trace_part["isa"],
                )
                return False

            # Clipping in UNINITIALIZED (offline_idx == 0) can happen during
            # calibration and is handled by MIMOSA
            if (
                offline_idx != 0
                and offline_trace_part["clip_rate"] != 0
                and not self.ignore_clipping
            ):
                processed_data[
                    "error"
                ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time".format(
                    off_idx=offline_idx,
                    on_idx=online_run_idx,
                    on_sub=online_trace_part_idx,
                    on_name=online_trace_part["name"],
                    clip=offline_trace_part["clip_rate"] * 100,
                )
                return False

            if (
                online_trace_part["isa"] == "state"
                and online_trace_part["name"] != "UNINITIALIZED"
                and len(traces[online_run_idx]["trace"]) > online_trace_part_idx + 1
            ):
                online_prev_transition = traces[online_run_idx]["trace"][
                    online_trace_part_idx - 1
                ]
                online_next_transition = traces[online_run_idx]["trace"][
                    online_trace_part_idx + 1
                ]
                try:
                    if self._state_is_too_short(
                        online_trace_part,
                        offline_trace_part,
                        state_duration,
                        online_next_transition,
                    ):
                        processed_data[
                            "error"
                        ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)".format(
                            off_idx=offline_idx,
                            on_idx=online_run_idx,
                            on_sub=online_trace_part_idx,
                            on_name=online_trace_part["name"],
                            dur=offline_trace_part["us"],
                        )
                        return False
                    if self._state_is_too_long(
                        online_trace_part,
                        offline_trace_part,
                        state_duration,
                        online_prev_transition,
                    ):
                        processed_data[
                            "error"
                        ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)".format(
                            off_idx=offline_idx,
                            on_idx=online_run_idx,
                            on_sub=online_trace_part_idx,
                            on_name=online_trace_part["name"],
                            dur=offline_trace_part["us"],
                        )
                        return False
                except KeyError:
                    pass
                    # TODO es gibt next_transitions ohne 'plan'
        return True

    def _merge_online_and_offline(self, measurement):
        # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
        # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
        # (appends data from measurement['energy_trace'])
        # If measurement['expected_trace'] exists, it is edited in place instead
        online_datapoints = []
        if "expected_trace" in measurement:
            traces = measurement["expected_trace"]
            traces = self.traces_by_fileno[measurement["fileno"]]
        else:
            traces = self.traces_by_fileno[measurement["fileno"]]
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run["trace"])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = measurement["energy_trace"][offline_idx]
            online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]

            if "offline" not in online_trace_part:
                online_trace_part["offline"] = [offline_trace_part]
            else:
                online_trace_part["offline"].append(offline_trace_part)

            paramkeys = sorted(online_trace_part["parameter"].keys())

            paramvalues = list()

            for paramkey in paramkeys:
                if type(online_trace_part["parameter"][paramkey]) is list:
                    paramvalues.append(
                        soft_cast_int(
                            online_trace_part["parameter"][paramkey][
                                measurement["repeat_id"]
                            ]
                        )
                    )
                else:
                    paramvalues.append(
                        soft_cast_int(online_trace_part["parameter"][paramkey])
                    )

            # NB: Unscheduled transitions do not have an 'args' field set.
            # However, they should only be caused by interrupts, and
            # interrupts don't have args anyways.
            if arg_support_enabled and "args" in online_trace_part:
                paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))

            if "offline_aggregates" not in online_trace_part:
                online_trace_part["offline_attributes"] = [
                    "power",
                    "duration",
                    "energy",
                ]
                online_trace_part["offline_aggregates"] = {
                    "power": [],
                    "duration": [],
                    "power_std": [],
                    "energy": [],
                    "paramkeys": [],
                    "param": [],
                }
                if online_trace_part["isa"] == "transition":
                    online_trace_part["offline_attributes"].extend(
                        ["rel_energy_prev", "rel_energy_next", "timeout"]
                    )
                    online_trace_part["offline_aggregates"]["rel_energy_prev"] = []
                    online_trace_part["offline_aggregates"]["rel_energy_next"] = []
                    online_trace_part["offline_aggregates"]["timeout"] = []

            # Note: All state/transitions are 20us "too long" due to injected
            # active wait states. These are needed to work around MIMOSA's
            # relatively low sample rate of 100 kHz (10us) and removed here.
            online_trace_part["offline_aggregates"]["power"].append(
                offline_trace_part["uW_mean"]
            )
            online_trace_part["offline_aggregates"]["duration"].append(
                offline_trace_part["us"] - 20
            )
            online_trace_part["offline_aggregates"]["power_std"].append(
                offline_trace_part["uW_std"]
            )
            online_trace_part["offline_aggregates"]["energy"].append(
                offline_trace_part["uW_mean"] * (offline_trace_part["us"] - 20)
            )
            online_trace_part["offline_aggregates"]["paramkeys"].append(paramkeys)
            online_trace_part["offline_aggregates"]["param"].append(paramvalues)
            if online_trace_part["isa"] == "transition":
                online_trace_part["offline_aggregates"]["rel_energy_prev"].append(
                    offline_trace_part["uW_mean_delta_prev"]
                    * (offline_trace_part["us"] - 20)
                )
                online_trace_part["offline_aggregates"]["rel_energy_next"].append(
                    offline_trace_part["uW_mean_delta_next"]
                    * (offline_trace_part["us"] - 20)
                )
                online_trace_part["offline_aggregates"]["timeout"].append(
                    offline_trace_part["timeout"]
                )

    def _merge_online_and_etlog(self, measurement):
        # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
        # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
        # (appends data from measurement['energy_trace'])
        online_datapoints = []
        traces = self.traces_by_fileno[measurement["fileno"]]
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run["trace"])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = measurement["energy_trace"][offline_idx]
            online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]

            if "offline" not in online_trace_part:
                online_trace_part["offline"] = [offline_trace_part]
            else:
                online_trace_part["offline"].append(offline_trace_part)

            paramkeys = sorted(online_trace_part["parameter"].keys())

            paramvalues = list()

            for paramkey in paramkeys:
                if type(online_trace_part["parameter"][paramkey]) is list:
                    paramvalues.append(
                        soft_cast_int(
                            online_trace_part["parameter"][paramkey][
                                measurement["repeat_id"]
                            ]
                        )
                    )
                else:
                    paramvalues.append(
                        soft_cast_int(online_trace_part["parameter"][paramkey])
                    )

            # NB: Unscheduled transitions do not have an 'args' field set.
            # However, they should only be caused by interrupts, and
            # interrupts don't have args anyways.
            if arg_support_enabled and "args" in online_trace_part:
                paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))

            if "offline_aggregates" not in online_trace_part:
                online_trace_part["offline_aggregates"] = {
                    "offline_attributes": ["power", "duration", "energy"],
                    "duration": list(),
                    "power": list(),
                    "power_std": list(),
                    "energy": list(),
                    "paramkeys": list(),
                    "param": list(),
                }

            offline_aggregates = online_trace_part["offline_aggregates"]

            # if online_trace_part['isa'] == 'transitions':
            #    online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next'])
            #    offline_aggregates['rel_energy_prev'] = list()
            #    offline_aggregates['rel_energy_next'] = list()

            offline_aggregates["duration"].append(offline_trace_part["s"] * 1e6)
            offline_aggregates["power"].append(offline_trace_part["W_mean"] * 1e6)
            offline_aggregates["power_std"].append(offline_trace_part["W_std"] * 1e6)
            offline_aggregates["energy"].append(
                offline_trace_part["W_mean"] * offline_trace_part["s"] * 1e12
            )
            offline_aggregates["paramkeys"].append(paramkeys)
            offline_aggregates["param"].append(paramvalues)

            # if online_trace_part['isa'] == 'transition':
            #    offline_aggregates['rel_energy_prev'].append(offline_trace_part['W_mean_delta_prev'] * offline_trace_part['s'] * 1e12)
            #    offline_aggregates['rel_energy_next'].append(offline_trace_part['W_mean_delta_next'] * offline_trace_part['s'] * 1e12)

    def _concatenate_traces(self, list_of_traces):
        """
        Concatenate `list_of_traces` (list of lists) into a single trace while adjusting trace IDs.

        :param list_of_traces: List of list of traces.
        :returns: List of traces with ['id'] in ascending order and ['orig_id'] as previous ['id']
        """

        trace_output = list()
        for trace in list_of_traces:
            trace_output.extend(trace.copy())
        for i, trace in enumerate(trace_output):
            trace["orig_id"] = trace["id"]
            trace["id"] = i
        return trace_output

    def get_preprocessed_data(self):
        """
        Return a list of DFA traces annotated with energy, timing, and parameter data.
        The list is cached on disk, unless the constructor was called with `with_traces` set.

        Each DFA trace contains the following elements:
         * `id`: Numeric ID, starting with 1
         * `total_energy`: Total amount of energy (as measured by MIMOSA) in the entire trace
         * `orig_id`: Original trace ID. May differ when concatenating multiple (different) benchmarks into one analysis, i.e., when calling RawData() with more than one file argument.
         * `trace`: List of the individual states and transitions in this trace. Always contains an even number of elements, staring with the first state (typically "UNINITIALIZED") and ending with a transition.

        Each trace element (that is, an entry of the `trace` list mentioned above) contains the following elements:
         * `isa`: "state" or "transition"
         * `name`: name
         * `offline`: List of offline measumerents for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
           Entry contents:
            - `clip_rate`: rate of clipped energy measurements, 0 .. 1
            - `raw_mean`: mean raw MIMOSA value
            - `raw_std`: standard deviation of raw MIMOSA value
            - `uW_mean`: mean power draw, uW
            - `uw_std`: standard deviation of power draw, uW
            - `us`: state/transition duration, us
            - `uW_mean_delta_prev`: (only for transitions) difference between uW_mean of this transition and uW_mean of previous state
            - `uW_mean_elta_next`: (only for transitions) difference between uW_mean of this transition and uW_mean of next state
            - `timeout`: (only for transitions) duration of previous state, us
         * `offline_aggregates`: Aggregate of `offline` entries. dict of lists, each list entry has the same length
            - `duration`: state/transition durations ("us"), us
            - `energy`: state/transition energy ("us * uW_mean"), us
            - `power`: mean power draw ("uW_mean"), uW
            - `power_std`: standard deviations of power draw ("uW_std"), uW^2
            - `paramkeys`: List of lists, each sub-list contains the parameter names corresponding to the `param` entries
            - `param`: List of lists, each sub-list contains the parameter values for this measurement. Typically, all sub-lists are the same.
            - `rel_energy_prev`: (only for transitions) transition energy relative to previous state mean power, pJ
            - `rel_energy_next`: (only for transitions) transition energy relative to next state mean power, pJ
            - `timeout`: (only for transitions) duration of previous state, us
         * `offline_attributes`: List containing the keys of `offline_aggregates` which are meant to be part of themodel.
           This list ultimately decides which hardware/software attributes the model describes.
           If isa == state, it contains power, duration, energy
           If isa == transition, it contains power, duration, energy, rel_energy_prev, rel_energy_next, timeout
         * `online`: List of online estimations for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
          Entry contents for isa == state:
            - `time`: state/transition
          Entry contents for isa == transition:
            - `timeout`: Duration of previous state, measured using on-board timers
         * `parameter`: dictionary describing parameter values for this state/transition. Parameter values refer to the begin of the state/transition and do not account for changes made by the transition.
         * `plan`: Dictionary describing expected behaviour according to schedule / offline model.
           Contents for isa == state: `energy`, `power`, `time`
           Contents for isa == transition: `energy`, `timeout`, `level`.
           If level is "user", the transition is part of the regular driver API. If level is "epilogue", it is an interrupt service routine and not called explicitly.
        Each transition also contains:
         * `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric
         * `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call
        """
        if self.preprocessed:
            return self.traces
        if self.version == 0:
            self._preprocess_012(0)
        elif self.version == 1:
            self._preprocess_012(1)
        elif self.version == 2:
            self._preprocess_012(2)
        self.preprocessed = True
        self.save_cache()
        return self.traces

    def _preprocess_012(self, version):
        """Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
        offline_data = []
        for i, filename in enumerate(self.filenames):

            if version == 0:

                with tarfile.open(filename) as tf:
                    self.setup_by_fileno.append(json.load(tf.extractfile("setup.json")))
                    self.traces_by_fileno.append(
                        json.load(tf.extractfile("src/apps/DriverEval/DriverLog.json"))
                    )
                    for member in tf.getmembers():
                        _, extension = os.path.splitext(member.name)
                        if extension == ".mim":
                            offline_data.append(
                                {
                                    "content": tf.extractfile(member).read(),
                                    "fileno": i,
                                    "info": member,
                                    "setup": self.setup_by_fileno[i],
                                    "with_traces": self.with_traces,
                                }
                            )

            elif version == 1:

                new_filenames = list()
                with tarfile.open(filename) as tf:
                    ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
                    self.pta = ptalog["pta"]

                    # Benchmark code may be too large to be executed in a single
                    # run, so benchmarks (a benchmark is basically a list of DFA runs)
                    # may be split up. To accomodate this, ptalog['traces'] is
                    # a list of lists: ptalog['traces'][0] corresponds to the
                    # first benchmark part, ptalog['traces'][1] to the
                    # second, and so on. ptalog['traces'][0][0] is the first
                    # trace (a sequence of states and transitions) in the
                    # first benchmark part, ptalog['traces'][0][1] the second, etc.
                    #
                    # As traces are typically repeated to minimize the effect
                    # of random noise, observations for each benchmark part
                    # are also lists. In this case, this applies in two
                    # cases: traces[i][j]['parameter'][some_param] is either
                    # a value (if the parameter is controlld by software)
                    # or a list (if the parameter is known a posteriori, e.g.
                    # "how many retransmissions did this packet take?").
                    #
                    # The second case is the MIMOSA energy measurements, which
                    # are listed in ptalog['files']. ptalog['files'][0]
                    # contains a list of files for the first benchmark part,
                    # ptalog['files'][0][0] is its first iteration/repetition,
                    # ptalog['files'][0][1] the second, etc.

                    for j, traces in enumerate(ptalog["traces"]):
                        new_filenames.append("{}#{}".format(filename, j))
                        self.traces_by_fileno.append(traces)
                        self.setup_by_fileno.append(
                            {
                                "mimosa_voltage": ptalog["configs"][j]["voltage"],
                                "mimosa_shunt": ptalog["configs"][j]["shunt"],
                                "state_duration": ptalog["opt"]["sleep"],
                            }
                        )
                        for repeat_id, mim_file in enumerate(ptalog["files"][j]):
                            member = tf.getmember(mim_file)
                            offline_data.append(
                                {
                                    "content": tf.extractfile(member).read(),
                                    "fileno": j,
                                    "info": member,
                                    "setup": self.setup_by_fileno[j],
                                    "repeat_id": repeat_id,
                                    "expected_trace": ptalog["traces"][j],
                                    "with_traces": self.with_traces,
                                }
                            )
                self.filenames = new_filenames

            elif version == 2:

                new_filenames = list()
                with tarfile.open(filename) as tf:
                    ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
                    self.pta = ptalog["pta"]

                    # Benchmark code may be too large to be executed in a single
                    # run, so benchmarks (a benchmark is basically a list of DFA runs)
                    # may be split up. To accomodate this, ptalog['traces'] is
                    # a list of lists: ptalog['traces'][0] corresponds to the
                    # first benchmark part, ptalog['traces'][1] to the
                    # second, and so on. ptalog['traces'][0][0] is the first
                    # trace (a sequence of states and transitions) in the
                    # first benchmark part, ptalog['traces'][0][1] the second, etc.
                    #
                    # As traces are typically repeated to minimize the effect
                    # of random noise, observations for each benchmark part
                    # are also lists. In this case, this applies in two
                    # cases: traces[i][j]['parameter'][some_param] is either
                    # a value (if the parameter is controlld by software)
                    # or a list (if the parameter is known a posteriori, e.g.
                    # "how many retransmissions did this packet take?").
                    #
                    # The second case is the MIMOSA energy measurements, which
                    # are listed in ptalog['files']. ptalog['files'][0]
                    # contains a list of files for the first benchmark part,
                    # ptalog['files'][0][0] is its first iteration/repetition,
                    # ptalog['files'][0][1] the second, etc.

                    # generate-dfa-benchmark uses TimingHarness to obtain timing data.
                    # Data is placed in 'offline_aggregates', which is also
                    # where we are going to store power/energy data.
                    # In case of invalid measurements, this can lead to a
                    # mismatch between duration and power/energy data, e.g.
                    # where duration = [A, B, C], power = [a, b], B belonging
                    # to an invalid measurement and thus power[b] corresponding
                    # to duration[C]. At the moment, this is harmless, but in the
                    # future it might not be.
                    if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
                        for trace_group in ptalog["traces"]:
                            for trace in trace_group:
                                for state_or_transition in trace["trace"]:
                                    offline_aggregates = state_or_transition.pop(
                                        "offline_aggregates", None
                                    )
                                    if offline_aggregates:
                                        state_or_transition[
                                            "online_aggregates"
                                        ] = offline_aggregates

                    for j, traces in enumerate(ptalog["traces"]):
                        new_filenames.append("{}#{}".format(filename, j))
                        self.traces_by_fileno.append(traces)
                        self.setup_by_fileno.append(
                            {
                                "voltage": ptalog["configs"][j]["voltage"],
                                "state_duration": ptalog["opt"]["sleep"],
                            }
                        )
                        for repeat_id, etlog_file in enumerate(ptalog["files"][j]):
                            member = tf.getmember(etlog_file)
                            offline_data.append(
                                {
                                    "content": tf.extractfile(member).read(),
                                    "fileno": j,
                                    "info": member,
                                    "setup": self.setup_by_fileno[j],
                                    "repeat_id": repeat_id,
                                    "expected_trace": ptalog["traces"][j],
                                    "with_traces": self.with_traces,
                                    "transition_names": list(
                                        map(
                                            lambda x: x["name"],
                                            ptalog["pta"]["transitions"],
                                        )
                                    ),
                                }
                            )
                self.filenames = new_filenames
                # TODO remove 'offline_aggregates' from pre-parse data and place
                # it under 'online_aggregates' or similar instead. This way, if
                # a .etlog file fails to parse, its corresponding duration data
                # will not linger in 'offline_aggregates' and confuse the hell
                # out of other code paths

        with Pool() as pool:
            if self.version <= 1:
                measurements = pool.map(_preprocess_mimosa, offline_data)
            elif self.version == 2:
                measurements = pool.map(_preprocess_etlog, offline_data)

        num_valid = 0
        for measurement in measurements:

            if "energy_trace" not in measurement:
                logger.warning(
                    "Skipping {ar:s}/{m:s}: {e:s}".format(
                        ar=self.filenames[measurement["fileno"]],
                        m=measurement["info"].name,
                        e="; ".join(measurement["datasource_errors"]),
                    ),
                )
                continue

            if version == 0:
                # Strip the last state (it is not part of the scheduled measurement)
                measurement["energy_trace"].pop()
            elif version == 1:
                # The first online measurement is the UNINITIALIZED state. In v1,
                # it is not part of the expected PTA trace -> remove it.
                measurement["energy_trace"].pop(0)

            if version == 0 or version == 1:
                if self._measurement_is_valid_01(measurement):
                    self._merge_online_and_offline(measurement)
                    num_valid += 1
                else:
                    logger.warning(
                        "Skipping {ar:s}/{m:s}: {e:s}".format(
                            ar=self.filenames[measurement["fileno"]],
                            m=measurement["info"].name,
                            e=measurement["error"],
                        ),
                    )
            elif version == 2:
                if self._measurement_is_valid_2(measurement):
                    self._merge_online_and_etlog(measurement)
                    num_valid += 1
                else:
                    logger.warning(
                        "Skipping {ar:s}/{m:s}: {e:s}".format(
                            ar=self.filenames[measurement["fileno"]],
                            m=measurement["info"].name,
                            e=measurement["error"],
                        ),
                    )
        logger.info(
            "{num_valid:d}/{num_total:d} measurements are valid".format(
                num_valid=num_valid, num_total=len(measurements)
            ),
        )
        if version == 0:
            self.traces = self._concatenate_traces(self.traces_by_fileno)
        elif version == 1:
            self.traces = self._concatenate_traces(
                map(lambda x: x["expected_trace"], measurements)
            )
            self.traces = self._concatenate_traces(self.traces_by_fileno)
        elif version == 2:
            self.traces = self._concatenate_traces(self.traces_by_fileno)
        self.preprocessing_stats = {
            "num_runs": len(measurements),
            "num_valid": num_valid,
        }


class ParallelParamFit:
    """
    Fit a set of functions on parameterized measurements.

    One parameter is variale, all others are fixed. Reports the best-fitting
    function type for each parameter.
    """

    def __init__(self, by_param):
        """Create a new ParallelParamFit object."""
        self.fit_queue = []
        self.by_param = by_param

    def enqueue(
        self,
        state_or_tran,
        attribute,
        param_index,
        param_name,
        safe_functions_enabled=False,
        param_filter=None,
    ):
        """
        Add state_or_tran/attribute/param_name to fit queue.

        This causes fit() to compute the best-fitting function for this model part.
        """
        self.fit_queue.append(
            {
                "key": [state_or_tran, attribute, param_name, param_filter],
                "args": [
                    self.by_param,
                    state_or_tran,
                    attribute,
                    param_index,
                    safe_functions_enabled,
                    param_filter,
                ],
            }
        )

    def fit(self):
        """
        Fit functions on previously enqueue data.

        Fitting is one in parallel with one process per core.

        Results can be accessed using the public ParallelParamFit.results object.
        """
        with Pool() as pool:
            self.results = pool.map(_try_fits_parallel, self.fit_queue)


def _try_fits_parallel(arg):
    """
    Call _try_fits(*arg['args']) and return arg['key'] and the _try_fits result.

    Must be a global function as it is called from a multiprocessing Pool.
    """
    return {"key": arg["key"], "result": _try_fits(*arg["args"])}


def _try_fits(
    by_param,
    state_or_tran,
    model_attribute,
    param_index,
    safe_functions_enabled=False,
    param_filter: dict = None,
):
    """
    Determine goodness-of-fit for prediction of `by_param[(state_or_tran, *)][model_attribute]` dependence on `param_index` using various functions.

    This is done by varying `param_index` while keeping all other parameters constant and doing one least squares optimization for each function and for each combination of the remaining parameters.
    The value of the parameter corresponding to `param_index` (e.g. txpower or packet length) is the sole input to the model function.
    Only numeric parameter values (as determined by `utils.is_numeric`) are used for fitting, non-numeric values such as None or enum strings are ignored.
    Fitting is only performed if at least three distinct parameter values exist in `by_param[(state_or_tran, *)]`.

    :returns:  a dictionary with the following elements:
        best -- name of the best-fitting function (see `analytic.functions`). `None` in case of insufficient data.
        best_rmsd -- mean Root Mean Square Deviation of best-fitting function over all combinations of the remaining parameters
        mean_rmsd -- mean Root Mean Square Deviation of a reference model using the mean of its respective input data as model value
        median_rmsd -- mean Root Mean Square Deviation of a reference model using the median of its respective input data as model value
        results -- mean goodness-of-fit measures for the individual functions. See `analytic.functions` for keys and `aggregate_measures` for values

    :param by_param: measurements partitioned by state/transition/... name and parameter values.
    Example: `{('foo', (0, 2)): {'bar': [2]}, ('foo', (0, 4)): {'bar': [4]}, ('foo', (0, 6)): {'bar': [6]}}`

    :param state_or_tran: state/transition/... name for which goodness-of-fit will be calculated (first element of by_param key tuple).
    Example: `'foo'`

    :param model_attribute: attribute for which goodness-of-fit will be calculated.
    Example: `'bar'`

    :param param_index: index of the parameter used as model input
    :param safe_functions_enabled: Include "safe" variants of functions with limited argument range.
    :param param_filter: Only use measurements whose parameters match param_filter for fitting.
    """

    functions = analytic.functions(safe_functions_enabled=safe_functions_enabled)

    for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
        # We might remove elements from 'functions' while iterating over
        # its keys. A generator will not allow this, so we need to
        # convert to a list.
        function_names = list(functions.keys())
        for function_name in function_names:
            function_object = functions[function_name]
            if is_numeric(param_key[1][param_index]) and not function_object.is_valid(
                param_key[1][param_index]
            ):
                functions.pop(function_name, None)

    raw_results = dict()
    raw_results_by_param = dict()
    ref_results = {"mean": list(), "median": list()}
    results = dict()
    results_by_param = dict()

    seen_parameter_combinations = set()

    # for each parameter combination:
    for param_key in filter(
        lambda x: x[0] == state_or_tran
        and remove_index_from_tuple(x[1], param_index)
        not in seen_parameter_combinations
        and len(by_param[x]["param"])
        and match_parameter_values(by_param[x]["param"][0], param_filter),
        by_param.keys(),
    ):
        X = []
        Y = []
        num_valid = 0
        num_total = 0

        # Ensure that each parameter combination is only optimized once. Otherwise, with parameters (1, 2, 5), (1, 3, 5), (1, 4, 5) and param_index == 1,
        # the parameter combination (1, *, 5) would be optimized three times, both wasting time and biasing results towards more frequently occuring combinations of non-param_index parameters
        seen_parameter_combinations.add(
            remove_index_from_tuple(param_key[1], param_index)
        )

        # for each value of the parameter denoted by param_index (all other parameters remain the same):
        for k, v in filter(
            lambda kv: param_slice_eq(kv[0], param_key, param_index), by_param.items()
        ):
            num_total += 1
            if is_numeric(k[1][param_index]):
                num_valid += 1
                X.extend([float(k[1][param_index])] * len(v[model_attribute]))
                Y.extend(v[model_attribute])

        if num_valid > 2:
            X = np.array(X)
            Y = np.array(Y)
            other_parameters = remove_index_from_tuple(k[1], param_index)
            raw_results_by_param[other_parameters] = dict()
            results_by_param[other_parameters] = dict()
            for function_name, param_function in functions.items():
                if function_name not in raw_results:
                    raw_results[function_name] = dict()
                error_function = param_function.error_function
                res = optimize.least_squares(
                    error_function, [0, 1], args=(X, Y), xtol=2e-15
                )
                measures = regression_measures(param_function.eval(res.x, X), Y)
                raw_results_by_param[other_parameters][function_name] = measures
                for measure, error_rate in measures.items():
                    if measure not in raw_results[function_name]:
                        raw_results[function_name][measure] = list()
                    raw_results[function_name][measure].append(error_rate)
                # print(function_name, res, measures)
            mean_measures = aggregate_measures(np.mean(Y), Y)
            ref_results["mean"].append(mean_measures["rmsd"])
            raw_results_by_param[other_parameters]["mean"] = mean_measures
            median_measures = aggregate_measures(np.median(Y), Y)
            ref_results["median"].append(median_measures["rmsd"])
            raw_results_by_param[other_parameters]["median"] = median_measures

    if not len(ref_results["mean"]):
        # Insufficient data for fitting
        # print('[W] Insufficient data for fitting {}/{}/{}'.format(state_or_tran, model_attribute, param_index))
        return {"best": None, "best_rmsd": np.inf, "results": results}

    for (
        other_parameter_combination,
        other_parameter_results,
    ) in raw_results_by_param.items():
        best_fit_val = np.inf
        best_fit_name = None
        results = dict()
        for function_name, result in other_parameter_results.items():
            if len(result) > 0:
                results[function_name] = result
                rmsd = result["rmsd"]
                if rmsd < best_fit_val:
                    best_fit_val = rmsd
                    best_fit_name = function_name
        results_by_param[other_parameter_combination] = {
            "best": best_fit_name,
            "best_rmsd": best_fit_val,
            "mean_rmsd": results["mean"]["rmsd"],
            "median_rmsd": results["median"]["rmsd"],
            "results": results,
        }

    best_fit_val = np.inf
    best_fit_name = None
    results = dict()
    for function_name, result in raw_results.items():
        if len(result) > 0:
            results[function_name] = {}
            for measure in result.keys():
                results[function_name][measure] = np.mean(result[measure])
            rmsd = results[function_name]["rmsd"]
            if rmsd < best_fit_val:
                best_fit_val = rmsd
                best_fit_name = function_name

    return {
        "best": best_fit_name,
        "best_rmsd": best_fit_val,
        "mean_rmsd": np.mean(ref_results["mean"]),
        "median_rmsd": np.mean(ref_results["median"]),
        "results": results,
        "results_by_other_param": results_by_param,
    }


def _num_args_from_by_name(by_name):
    num_args = dict()
    for key, value in by_name.items():
        if "args" in value:
            num_args[key] = len(value["args"][0])
    return num_args


def get_fit_result(results, name, attribute, param_filter: dict = None):
    """
    Parse and sanitize fit results for state/transition/... 'name' and model attribute 'attribute'.

    Filters out results where the best function is worse (or not much better than) static mean/median estimates.

    :param results: fit results as returned by `paramfit.results`
    :param name: state/transition/... name, e.g. 'TX'
    :param attribute: model attribute, e.g. 'duration'
    :param param_filter:
    :returns: dict with fit result (see `_try_fits`) for each successfully fitted parameter. E.g. {'param 1': {'best' : 'function name', ...} }
    """
    fit_result = dict()
    for result in results:
        if (
            result["key"][0] == name
            and result["key"][1] == attribute
            and result["key"][3] == param_filter
            and result["result"]["best"] is not None
        ):  # dürfte an ['best'] != None liegen-> Fit für gefilterten Kram schlägt fehl?
            this_result = result["result"]
            if this_result["best_rmsd"] >= min(
                this_result["mean_rmsd"], this_result["median_rmsd"]
            ):
                logger.debug(
                    "Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})".format(
                        name,
                        attribute,
                        result["key"][2],
                        this_result["best_rmsd"],
                        this_result["mean_rmsd"],
                        this_result["median_rmsd"],
                    )
                )
            # See notes on depends_on_param
            elif this_result["best_rmsd"] >= 0.8 * min(
                this_result["mean_rmsd"], this_result["median_rmsd"]
            ):
                logger.debug(
                    "Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ref ({:.0f}, {:.0f})".format(
                        name,
                        attribute,
                        result["key"][2],
                        this_result["best_rmsd"],
                        this_result["mean_rmsd"],
                        this_result["median_rmsd"],
                    )
                )
            else:
                fit_result[result["key"][2]] = this_result
    return fit_result


class AnalyticModel:
    u"""
    Parameter-aware analytic energy/data size/... model.

    Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.

    These provide measurements aggregated by (function/state/...) name
    and (for by_param) parameter values. Layout:
    dictionary with one key per name ('send', 'TX', ...) or
    one key per name and parameter combination
    (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).

    Parameter values must be ordered corresponding to the lexically sorted parameter names.

    Each element is in turn a dict with the following elements:
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    - for each attribute mentioned in 'attributes': A list with measurements.
      All list except for 'attributes' must have the same length.

    For example:
    parameters = ['foo_count', 'irrelevant']
    by_name = {
        'foo' : [1, 1, 2],
        'bar' : [5, 6, 7],
        'attributes' : ['foo', 'bar'],
        'param' : [[1, 0], [1, 0], [2, 0]]
    }

    methods:
    get_static -- return static (parameter-unaware) model.
    get_param_lut -- return parameter-aware look-up-table model. Cannot model parameter combinations not present in by_param.
    get_fitted -- return parameter-aware model using fitted functions for behaviour prediction.

    variables:
    names -- function/state/... names (i.e., the keys of by_name)
    parameters -- parameter names
    stats -- ParamStats object providing parameter-dependency statistics for each name and attribute
    assess -- calculate model quality
    """

    def __init__(
        self,
        by_name,
        parameters,
        arg_count=None,
        function_override=dict(),
        use_corrcoef=False,
    ):
        """
        Create a new AnalyticModel and compute parameter statistics.

        :param by_name: measurements aggregated by (function/state/...) name.
            Layout: dictionary with one key per name ('send', 'TX', ...) or
            one key per name and parameter combination
            (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).

            Parameter values must be ordered corresponding to the lexically sorted parameter names.

            Each element is in turn a dict with the following elements:
            - param: list of parameter values in each measurement (-> list of lists)
            - attributes: list of keys that should be analyzed,
                e.g. ['power', 'duration']
            - for each attribute mentioned in 'attributes': A list with measurements.
            All list except for 'attributes' must have the same length.

            For example:
            parameters = ['foo_count', 'irrelevant']
            by_name = {
                'foo' : [1, 1, 2],
                'duration' : [5, 6, 7],
                'attributes' : ['foo', 'duration'],
                'param' : [[1, 0], [1, 0], [2, 0]]
                # foo_count-^  ^-irrelevant
            }
        :param parameters: List of parameter names
        :param function_override: dict of overrides for automatic parameter function generation.
            If (state or transition name, model attribute) is present in function_override,
            the corresponding text string is the function used for analytic (parameter-aware/fitted)
            modeling of this attribute. It is passed to AnalyticFunction, see
            there for the required format. Note that this happens regardless of
            parameter dependency detection: The provided analytic function will be assigned
            even if it seems like the model attribute is static / parameter-independent.
        :param use_corrcoef: use correlation coefficient instead of stddev comparison to detect whether a model attribute depends on a parameter
        """
        self.cache = dict()
        self.by_name = by_name
        self.by_param = by_name_to_by_param(by_name)
        self.names = sorted(by_name.keys())
        self.parameters = sorted(parameters)
        self.function_override = function_override.copy()
        self._use_corrcoef = use_corrcoef
        self._num_args = arg_count
        if self._num_args is None:
            self._num_args = _num_args_from_by_name(by_name)

        self.stats = ParamStats(
            self.by_name,
            self.by_param,
            self.parameters,
            self._num_args,
            use_corrcoef=use_corrcoef,
        )

    def _get_model_from_dict(self, model_dict, model_function):
        model = {}
        for name, elem in model_dict.items():
            model[name] = {}
            for key in elem["attributes"]:
                try:
                    model[name][key] = model_function(elem[key])
                except RuntimeWarning:
                    logger.warning("Got no data for {} {}".format(name, key))
                except FloatingPointError as fpe:
                    logger.warning("Got no data for {} {}: {}".format(name, key, fpe),)
        return model

    def param_index(self, param_name):
        if param_name in self.parameters:
            return self.parameters.index(param_name)
        return len(self.parameters) + int(param_name)

    def param_name(self, param_index):
        if param_index < len(self.parameters):
            return self.parameters[param_index]
        return str(param_index)

    def get_static(self, use_mean=False):
        """
        Get static model function: name, attribute -> model value.

        Uses the median of by_name for modeling.
        """
        getter_function = np.median

        if use_mean:
            getter_function = np.mean

        static_model = self._get_model_from_dict(self.by_name, getter_function)

        def static_model_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_model_getter

    def get_param_lut(self, fallback=False):
        """
        Get parameter-look-up-table model function: name, attribute, parameter values -> model value.

        The function can only give model values for parameter combinations
        present in by_param. By default, it raises KeyError for other values.

        arguments:
        fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)
        lut_model = self._get_model_from_dict(self.by_param, np.median)

        def lut_median_getter(name, key, param, arg=[], **kwargs):
            param.extend(map(soft_cast_int, arg))
            try:
                return lut_model[(name, tuple(param))][key]
            except KeyError:
                if fallback:
                    return static_model[name][key]
                raise

        return lut_median_getter

    def get_fitted(self, safe_functions_enabled=False):
        """
        Get paramete-aware model function and model information function.

        Returns two functions:
        model_function(name, attribute, param=parameter values) -> model value.
        model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
        """
        if "fitted_model_getter" in self.cache and "fitted_info_getter" in self.cache:
            return self.cache["fitted_model_getter"], self.cache["fitted_info_getter"]

        static_model = self._get_model_from_dict(self.by_name, np.median)
        param_model = dict([[name, {}] for name in self.by_name.keys()])
        paramfit = ParallelParamFit(self.by_param)

        for name in self.by_name.keys():
            for attribute in self.by_name[name]["attributes"]:
                for param_index, param in enumerate(self.parameters):
                    if self.stats.depends_on_param(name, attribute, param):
                        paramfit.enqueue(name, attribute, param_index, param, False)
                if arg_support_enabled and name in self._num_args:
                    for arg_index in range(self._num_args[name]):
                        if self.stats.depends_on_arg(name, attribute, arg_index):
                            paramfit.enqueue(
                                name,
                                attribute,
                                len(self.parameters) + arg_index,
                                arg_index,
                                False,
                            )

        paramfit.fit()

        for name in self.by_name.keys():
            num_args = 0
            if name in self._num_args:
                num_args = self._num_args[name]
            for attribute in self.by_name[name]["attributes"]:
                fit_result = get_fit_result(paramfit.results, name, attribute)

                if (name, attribute) in self.function_override:
                    function_str = self.function_override[(name, attribute)]
                    x = AnalyticFunction(function_str, self.parameters, num_args)
                    x.fit(self.by_param, name, attribute)
                    if x.fit_success:
                        param_model[name][attribute] = {
                            "fit_result": fit_result,
                            "function": x,
                        }
                elif len(fit_result.keys()):
                    x = analytic.function_powerset(
                        fit_result, self.parameters, num_args
                    )
                    x.fit(self.by_param, name, attribute)

                    if x.fit_success:
                        param_model[name][attribute] = {
                            "fit_result": fit_result,
                            "function": x,
                        }

        def model_getter(name, key, **kwargs):
            if "arg" in kwargs and "param" in kwargs:
                kwargs["param"].extend(map(soft_cast_int, kwargs["arg"]))
            if key in param_model[name]:
                param_list = kwargs["param"]
                param_function = param_model[name][key]["function"]
                if param_function.is_predictable(param_list):
                    return param_function.eval(param_list)
            return static_model[name][key]

        def info_getter(name, key):
            if key in param_model[name]:
                return param_model[name][key]
            return None

        self.cache["fitted_model_getter"] = model_getter
        self.cache["fitted_info_getter"] = info_getter

        return model_getter, info_getter

    def assess(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each by_name entry.

        state/transition/... name and parameter values are fed into model_function.
        The by_name entries of this AnalyticModel are used as ground truth and
        compared with the values predicted by model_function.

        For proper model assessments, the data used to generate model_function
        and the data fed into this AnalyticModel instance must be mutually
        exclusive (e.g. by performing cross validation). Otherwise,
        overfitting cannot be detected.
        """
        detailed_results = {}
        for name, elem in sorted(self.by_name.items()):
            detailed_results[name] = {}
            for attribute in elem["attributes"]:
                predicted_data = np.array(
                    list(
                        map(
                            lambda i: model_function(
                                name, attribute, param=elem["param"][i]
                            ),
                            range(len(elem[attribute])),
                        )
                    )
                )
                measures = regression_measures(predicted_data, elem[attribute])
                detailed_results[name][attribute] = measures

        return {
            "by_name": detailed_results,
        }

    def to_json(self):
        # TODO
        pass


def _add_trace_data_to_aggregate(aggregate, key, element):
    # Only cares about element['isa'], element['offline_aggregates'], and
    # element['plan']['level']
    if key not in aggregate:
        aggregate[key] = {"isa": element["isa"]}
        for datakey in element["offline_aggregates"].keys():
            aggregate[key][datakey] = []
        if element["isa"] == "state":
            aggregate[key]["attributes"] = ["power"]
        else:
            # TODO do not hardcode values
            aggregate[key]["attributes"] = [
                "duration",
                "energy",
                "rel_energy_prev",
                "rel_energy_next",
            ]
            # Uncomment this line if you also want to analyze mean transition power
            # aggrgate[key]['attributes'].append('power')
            if "plan" in element and element["plan"]["level"] == "epilogue":
                aggregate[key]["attributes"].insert(0, "timeout")
        attributes = aggregate[key]["attributes"].copy()
        for attribute in attributes:
            if attribute not in element["offline_aggregates"]:
                aggregate[key]["attributes"].remove(attribute)
    for datakey, dataval in element["offline_aggregates"].items():
        aggregate[key][datakey].extend(dataval)


def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
    u"""
    Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.

    arguments:
    traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
        Jeder Lauf:
        - id: int Nummer des Laufs, beginnend bei 1
        - trace: [ ... Liste von Zuständen und Transitionen
            Jeweils:
            - name: str Name
            - isa: str state // transition
            - parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
            - args: [ Funktionsargumente, falls isa == 'transition' ]
            - offline_aggregates:
                - power: [float(uW)] Mittlere Leistung während Zustand/Transitions
                - power_std: [float(uW^2)] Standardabweichung der Leistung
                - duration: [int(us)] Dauer
                - energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
                - clip_rate: [float(0..1)] Clipping
                - paramkeys: [[str]] Name der berücksichtigten Parameter
                - param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
                Falls isa == 'transition':
                - timeout: [int(us)] Dauer des vorherigen Zustands
                - rel_energy_prev: [int(pJ)]
                - rel_energy_next: [int(pJ)]
        ]
    ]
    ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.

    returns a tuple of three elements:
    by_name -- measurements aggregated by state/transition name, annotated with parameter values
    parameter_names -- list of parameter names
    arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function

    by_name layout:
    Dictionary with one key per state/transition ('send', 'TX', ...).
    Each element is in turn a dict with the following elements:
    - isa: 'state' or 'transition'
    - power: list of mean power measurements in µW
    - duration: list of durations in µs
    - power_std: list of stddev of power per state/transition
    - energy: consumed energy (power*duration) in pJ
    - paramkeys: list of parameter names in each measurement (-> list of lists)
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    additionally, only if isa == 'transition':
    - timeout: list of duration of previous state in µs
    - rel_energy_prev: transition energy relative to previous state mean power in pJ
    - rel_energy_next: transition energy relative to next state mean power in pJ
    """
    arg_count = dict()
    by_name = dict()
    parameter_names = sorted(traces[0]["trace"][0]["parameter"].keys())
    for run in traces:
        if run["id"] not in ignore_trace_indexes:
            for elem in run["trace"]:
                if (
                    elem["isa"] == "transition"
                    and not elem["name"] in arg_count
                    and "args" in elem
                ):
                    arg_count[elem["name"]] = len(elem["args"])
                if elem["name"] != "UNINITIALIZED":
                    _add_trace_data_to_aggregate(by_name, elem["name"], elem)
    for elem in by_name.values():
        for key in elem["attributes"]:
            elem[key] = np.array(elem[key])
    return by_name, parameter_names, arg_count


class PTAModel:
    u"""
    Parameter-aware PTA-based energy model.

    Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.

    The model heavily relies on two internal data structures:
    PTAModel.by_name and PTAModel.by_param.

    These provide measurements aggregated by state/transition name
    and (for by_param) parameter values. Layout:
    dictionary with one key per state/transition ('send', 'TX', ...) or
    one key per state/transition and parameter combination
    (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
    For by_param, parameter values are ordered corresponding to the lexically sorted parameter names.

    Each element is in turn a dict with the following elements:
    - isa: 'state' or 'transition'
    - power: list of mean power measurements in µW
    - duration: list of durations in µs
    - power_std: list of stddev of power per state/transition
    - energy: consumed energy (power*duration) in pJ
    - paramkeys: list of parameter names in each measurement (-> list of lists)
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    additionally, only if isa == 'transition':
    - timeout: list of duration of previous state in µs
    - rel_energy_prev: transition energy relative to previous state mean power in pJ
    - rel_energy_next: transition energy relative to next state mean power in pJ
    """

    def __init__(
        self,
        by_name,
        parameters,
        arg_count,
        traces=[],
        ignore_trace_indexes=[],
        discard_outliers=None,
        function_override={},
        use_corrcoef=False,
        pta=None,
    ):
        """
        Prepare a new PTA energy model.

        Actual model generation is done on-demand by calling the respective functions.

        arguments:
        by_name -- state/transition measurements aggregated by name, as returned by pta_trace_to_aggregate.
        parameters -- list of parameter names, as returned by pta_trace_to_aggregate
        arg_count -- function arguments, as returned by pta_trace_to_aggregate
        traces -- list of preprocessed DFA traces, as returned by RawData.get_preprocessed_data()
        ignore_trace_indexes -- list of trace indexes. The corresponding traces will be ignored.
        discard_outliers -- currently not supported: threshold for outlier detection and removel (float).
            Outlier detection is performed individually for each state/transition in each trace,
            so it only works if the benchmark ran several times.
            Given "data" (a set of measurements of the same thing, e.g. TX duration in the third benchmark trace),
            "m" (the median of all attribute measurements with the same parameters, which may include data from other traces),
            a data point X is considered an outlier if
            | 0.6745 * (X - m) / median(|data - m|) | > discard_outliers .
        function_override -- dict of overrides for automatic parameter function generation.
            If (state or transition name, model attribute) is present in function_override,
            the corresponding text string is the function used for analytic (parameter-aware/fitted)
            modeling of this attribute. It is passed to AnalyticFunction, see
            there for the required format. Note that this happens regardless of
            parameter dependency detection: The provided analytic function will be assigned
            even if it seems like the model attribute is static / parameter-independent.
        use_corrcoef -- use correlation coefficient instead of stddev comparison
            to detect whether a model attribute depends on a parameter
        pta -- hardware model as `PTA` object
        """
        self.by_name = by_name
        self.by_param = by_name_to_by_param(by_name)
        self._parameter_names = sorted(parameters)
        self._num_args = arg_count
        self._use_corrcoef = use_corrcoef
        self.traces = traces
        self.stats = ParamStats(
            self.by_name,
            self.by_param,
            self._parameter_names,
            self._num_args,
            self._use_corrcoef,
        )
        self.cache = {}
        np.seterr("raise")
        self._outlier_threshold = discard_outliers
        self.function_override = function_override.copy()
        self.pta = pta
        self.ignore_trace_indexes = ignore_trace_indexes
        self._aggregate_to_ndarray(self.by_name)

    def _aggregate_to_ndarray(self, aggregate):
        for elem in aggregate.values():
            for key in elem["attributes"]:
                elem[key] = np.array(elem[key])

    # This heuristic is very similar to the "function is not much better than
    # median" checks in get_fitted. So far, doing it here as well is mostly
    # a performance and not an algorithm quality decision.
    # --df, 2018-04-18
    def depends_on_param(self, state_or_trans, key, param):
        return self.stats.depends_on_param(state_or_trans, key, param)

    # See notes on depends_on_param
    def depends_on_arg(self, state_or_trans, key, param):
        return self.stats.depends_on_arg(state_or_trans, key, param)

    def _get_model_from_dict(self, model_dict, model_function):
        model = {}
        for name, elem in model_dict.items():
            model[name] = {}
            for key in elem["attributes"]:
                try:
                    model[name][key] = model_function(elem[key])
                except RuntimeWarning:
                    logger.warning("Got no data for {} {}".format(name, key))
                except FloatingPointError as fpe:
                    logger.warning("Got no data for {} {}: {}".format(name, key, fpe),)
        return model

    def get_static(self, use_mean=False):
        """
        Get static model function: name, attribute -> model value.

        Uses the median of by_name for modeling, unless `use_mean` is set.
        """
        getter_function = np.median

        if use_mean:
            getter_function = np.mean

        static_model = self._get_model_from_dict(self.by_name, getter_function)

        def static_model_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_model_getter

    def get_param_lut(self, fallback=False):
        """
        Get parameter-look-up-table model function: name, attribute, parameter values -> model value.

        The function can only give model values for parameter combinations
        present in by_param. By default, it raises KeyError for other values.

        arguments:
        fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)
        lut_model = self._get_model_from_dict(self.by_param, np.median)

        def lut_median_getter(name, key, param, arg=[], **kwargs):
            param.extend(map(soft_cast_int, arg))
            try:
                return lut_model[(name, tuple(param))][key]
            except KeyError:
                if fallback:
                    return static_model[name][key]
                raise

        return lut_median_getter

    def param_index(self, param_name):
        if param_name in self._parameter_names:
            return self._parameter_names.index(param_name)
        return len(self._parameter_names) + int(param_name)

    def param_name(self, param_index):
        if param_index < len(self._parameter_names):
            return self._parameter_names[param_index]
        return str(param_index)

    def get_fitted(self, safe_functions_enabled=False):
        """
        Get parameter-aware model function and model information function.

        Returns two functions:
        model_function(name, attribute, param=parameter values) -> model value.
        model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
        """
        if "fitted_model_getter" in self.cache and "fitted_info_getter" in self.cache:
            return self.cache["fitted_model_getter"], self.cache["fitted_info_getter"]

        static_model = self._get_model_from_dict(self.by_name, np.median)
        param_model = dict(
            [[state_or_tran, {}] for state_or_tran in self.by_name.keys()]
        )
        paramfit = ParallelParamFit(self.by_param)
        for state_or_tran in self.by_name.keys():
            for model_attribute in self.by_name[state_or_tran]["attributes"]:
                fit_results = {}
                for parameter_index, parameter_name in enumerate(self._parameter_names):
                    if self.depends_on_param(
                        state_or_tran, model_attribute, parameter_name
                    ):
                        paramfit.enqueue(
                            state_or_tran,
                            model_attribute,
                            parameter_index,
                            parameter_name,
                            safe_functions_enabled,
                        )
                        for (
                            codependent_param_dict
                        ) in self.stats.codependent_parameter_value_dicts(
                            state_or_tran, model_attribute, parameter_name
                        ):
                            paramfit.enqueue(
                                state_or_tran,
                                model_attribute,
                                parameter_index,
                                parameter_name,
                                safe_functions_enabled,
                                codependent_param_dict,
                            )
                if (
                    arg_support_enabled
                    and self.by_name[state_or_tran]["isa"] == "transition"
                ):
                    for arg_index in range(self._num_args[state_or_tran]):
                        if self.depends_on_arg(
                            state_or_tran, model_attribute, arg_index
                        ):
                            paramfit.enqueue(
                                state_or_tran,
                                model_attribute,
                                len(self._parameter_names) + arg_index,
                                arg_index,
                                safe_functions_enabled,
                            )
        paramfit.fit()

        for state_or_tran in self.by_name.keys():
            num_args = 0
            if (
                arg_support_enabled
                and self.by_name[state_or_tran]["isa"] == "transition"
            ):
                num_args = self._num_args[state_or_tran]
            for model_attribute in self.by_name[state_or_tran]["attributes"]:
                fit_results = get_fit_result(
                    paramfit.results, state_or_tran, model_attribute
                )

                for parameter_name in self._parameter_names:
                    if self.depends_on_param(
                        state_or_tran, model_attribute, parameter_name
                    ):
                        for (
                            codependent_param_dict
                        ) in self.stats.codependent_parameter_value_dicts(
                            state_or_tran, model_attribute, parameter_name
                        ):
                            pass
                            # FIXME get_fit_result hat ja gar keinen Parameter als Argument...

                if (state_or_tran, model_attribute) in self.function_override:
                    function_str = self.function_override[
                        (state_or_tran, model_attribute)
                    ]
                    x = AnalyticFunction(function_str, self._parameter_names, num_args)
                    x.fit(self.by_param, state_or_tran, model_attribute)
                    if x.fit_success:
                        param_model[state_or_tran][model_attribute] = {
                            "fit_result": fit_results,
                            "function": x,
                        }
                elif len(fit_results.keys()):
                    x = analytic.function_powerset(
                        fit_results, self._parameter_names, num_args
                    )
                    x.fit(self.by_param, state_or_tran, model_attribute)
                    if x.fit_success:
                        param_model[state_or_tran][model_attribute] = {
                            "fit_result": fit_results,
                            "function": x,
                        }

        def model_getter(name, key, **kwargs):
            if "arg" in kwargs and "param" in kwargs:
                kwargs["param"].extend(map(soft_cast_int, kwargs["arg"]))
            if key in param_model[name]:
                param_list = kwargs["param"]
                param_function = param_model[name][key]["function"]
                if param_function.is_predictable(param_list):
                    return param_function.eval(param_list)
            return static_model[name][key]

        def info_getter(name, key):
            if key in param_model[name]:
                return param_model[name][key]
            return None

        self.cache["fitted_model_getter"] = model_getter
        self.cache["fitted_info_getter"] = info_getter

        return model_getter, info_getter

    def to_json(self):
        static_model = self.get_static()
        static_quality = self.assess(static_model)
        param_model, param_info = self.get_fitted()
        analytic_quality = self.assess(param_model)
        self.pta.update(
            static_model,
            param_info,
            static_error=static_quality["by_name"],
            analytic_error=analytic_quality["by_name"],
        )
        return self.pta.to_json()

    def states(self):
        """Return sorted list of state names."""
        return sorted(
            list(
                filter(lambda k: self.by_name[k]["isa"] == "state", self.by_name.keys())
            )
        )

    def transitions(self):
        """Return sorted list of transition names."""
        return sorted(
            list(
                filter(
                    lambda k: self.by_name[k]["isa"] == "transition",
                    self.by_name.keys(),
                )
            )
        )

    def states_and_transitions(self):
        """Return list of states and transition names."""
        ret = self.states()
        ret.extend(self.transitions())
        return ret

    def parameters(self):
        return self._parameter_names

    def attributes(self, state_or_trans):
        return self.by_name[state_or_trans]["attributes"]

    def assess(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each by_name entry.

        state/transition/... name and parameter values are fed into model_function.
        The by_name entries of this PTAModel are used as ground truth and
        compared with the values predicted by model_function.

        For proper model assessments, the data used to generate model_function
        and the data fed into this AnalyticModel instance must be mutually
        exclusive (e.g. by performing cross validation). Otherwise,
        overfitting cannot be detected.
        """
        detailed_results = {}
        for name, elem in sorted(self.by_name.items()):
            detailed_results[name] = {}
            for key in elem["attributes"]:
                predicted_data = np.array(
                    list(
                        map(
                            lambda i: model_function(name, key, param=elem["param"][i]),
                            range(len(elem[key])),
                        )
                    )
                )
                measures = regression_measures(predicted_data, elem[key])
                detailed_results[name][key] = measures

        return {"by_name": detailed_results}

    def assess_states(
        self, model_function, model_attribute="power", distribution: dict = None
    ):
        """
        Calculate overall model error assuming equal distribution of states
        """
        # TODO calculate mean power draw for distribution and use it to
        # calculate relative error from MAE combination
        model_quality = self.assess(model_function)
        num_states = len(self.states())
        if distribution is None:
            distribution = dict(map(lambda x: [x, 1 / num_states], self.states()))

        if not np.isclose(sum(distribution.values()), 1):
            raise ValueError(
                "distribution must be a probability distribution with sum 1"
            )

        # total_value = None
        # try:
        #     total_value = sum(map(lambda x: model_function(x, model_attribute) * distribution[x], self.states()))
        # except KeyError:
        #     pass

        total_error = np.sqrt(
            sum(
                map(
                    lambda x: np.square(
                        model_quality["by_name"][x][model_attribute]["mae"]
                        * distribution[x]
                    ),
                    self.states(),
                )
            )
        )
        return total_error

    def assess_on_traces(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each trace known to this PTAModel instance.

        :returns: dict of `duration_by_trace`, `energy_by_trace`, `timeout_by_trace`, `rel_energy_by_trace` and `state_energy_by_trace`.
            Each entry holds regression measures for the corresponding measure. Note that the determined model quality heavily depends on the
            traces: small-ish absolute errors in states which frequently occur may have more effect than large absolute errors in rarely occuring states
        """
        model_energy_list = []
        real_energy_list = []
        model_rel_energy_list = []
        model_state_energy_list = []
        model_duration_list = []
        real_duration_list = []
        model_timeout_list = []
        real_timeout_list = []

        for trace in self.traces:
            if trace["id"] not in self.ignore_trace_indexes:
                for rep_id in range(len(trace["trace"][0]["offline"])):
                    model_energy = 0.0
                    real_energy = 0.0
                    model_rel_energy = 0.0
                    model_state_energy = 0.0
                    model_duration = 0.0
                    real_duration = 0.0
                    model_timeout = 0.0
                    real_timeout = 0.0
                    for i, trace_part in enumerate(trace["trace"]):
                        name = trace_part["name"]
                        prev_name = trace["trace"][i - 1]["name"]
                        isa = trace_part["isa"]
                        if name != "UNINITIALIZED":
                            try:
                                param = trace_part["offline_aggregates"]["param"][
                                    rep_id
                                ]
                                prev_param = trace["trace"][i - 1][
                                    "offline_aggregates"
                                ]["param"][rep_id]
                                power = trace_part["offline"][rep_id]["uW_mean"]
                                duration = trace_part["offline"][rep_id]["us"]
                                prev_duration = trace["trace"][i - 1]["offline"][
                                    rep_id
                                ]["us"]
                                real_energy += power * duration
                                if isa == "state":
                                    model_energy += (
                                        model_function(name, "power", param=param)
                                        * duration
                                    )
                                else:
                                    model_energy += model_function(
                                        name, "energy", param=param
                                    )
                                    # If i == 1, the previous state was UNINITIALIZED, for which we do not have model data
                                    if i == 1:
                                        model_rel_energy += model_function(
                                            name, "energy", param=param
                                        )
                                    else:
                                        model_rel_energy += model_function(
                                            prev_name, "power", param=prev_param
                                        ) * (prev_duration + duration)
                                        model_state_energy += model_function(
                                            prev_name, "power", param=prev_param
                                        ) * (prev_duration + duration)
                                    model_rel_energy += model_function(
                                        name, "rel_energy_prev", param=param
                                    )
                                    real_duration += duration
                                    model_duration += model_function(
                                        name, "duration", param=param
                                    )
                                    if (
                                        "plan" in trace_part
                                        and trace_part["plan"]["level"] == "epilogue"
                                    ):
                                        real_timeout += trace_part["offline"][rep_id][
                                            "timeout"
                                        ]
                                        model_timeout += model_function(
                                            name, "timeout", param=param
                                        )
                            except KeyError:
                                # if states/transitions have been removed via --filter-param, this is harmless
                                pass
                    real_energy_list.append(real_energy)
                    model_energy_list.append(model_energy)
                    model_rel_energy_list.append(model_rel_energy)
                    model_state_energy_list.append(model_state_energy)
                    real_duration_list.append(real_duration)
                    model_duration_list.append(model_duration)
                    real_timeout_list.append(real_timeout)
                    model_timeout_list.append(model_timeout)

        return {
            "duration_by_trace": regression_measures(
                np.array(model_duration_list), np.array(real_duration_list)
            ),
            "energy_by_trace": regression_measures(
                np.array(model_energy_list), np.array(real_energy_list)
            ),
            "timeout_by_trace": regression_measures(
                np.array(model_timeout_list), np.array(real_timeout_list)
            ),
            "rel_energy_by_trace": regression_measures(
                np.array(model_rel_energy_list), np.array(real_energy_list)
            ),
            "state_energy_by_trace": regression_measures(
                np.array(model_state_energy_list), np.array(real_energy_list)
            ),
        }


class EnergyTraceLog:
    """
    EnergyTrace log loader for DFA traces.

    Expects an EnergyTrace log file generated via msp430-etv / energytrace-util
    and a dfatool-generated benchmark. An EnergyTrace log consits of a series
    of measurements. Each measurement has a timestamp, mean current, voltage,
    and cumulative energy since start of measurement. Each transition is
    preceded by a Code128 barcode embedded into the energy consumption by
    toggling a LED.

    Note that the baseline power draw of board and peripherals is not subtracted
    at the moment.
    """

    def __init__(
        self,
        voltage: float,
        state_duration: int,
        transition_names: list,
        with_traces=False,
    ):
        """
        Create a new EnergyTraceLog object.

        :param voltage: supply voltage [V], usually 3.3 V
        :param state_duration: state duration [ms]
        :param transition_names: list of transition names in PTA transition order.
            Needed to map barcode synchronization numbers to transitions.
        """
        self.voltage = voltage
        self.state_duration = state_duration * 1e-3
        self.transition_names = transition_names
        self.with_traces = with_traces
        self.errors = list()

        # TODO auto-detect
        self.led_power = 10e-3

        # multipass/include/object/ptalog.h#startTransition
        self.module_duration = 5e-3

        # multipass/include/object/ptalog.h#startTransition
        self.quiet_zone_duration = 60e-3

        # TODO auto-detect?
        # Note that we consider barcode duration after start, so only the
        # quiet zone -after- the code is relevant
        self.min_barcode_duration = 57 * self.module_duration + self.quiet_zone_duration
        self.max_barcode_duration = 68 * self.module_duration + self.quiet_zone_duration

    def load_data(self, log_data):
        """
        Load log data (raw energytrace .txt file, one line per event).

        :param log_data: raw energytrace log file in 4-column .txt format
        """

        if not zbar_available:
            self.errors.append(
                'zbar module is not available. Try "apt install python3-zbar"'
            )
            return list()

        lines = log_data.decode("ascii").split("\n")
        data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
        data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)

        data = np.empty((data_count, 4))

        for i, line in enumerate(data_lines):
            fields = line.split(" ")
            if len(fields) == 4:
                timestamp, current, voltage, total_energy = map(int, fields)
            elif len(fields) == 5:
                # cpustate = fields[0]
                timestamp, current, voltage, total_energy = map(int, fields[1:])
            else:
                raise RuntimeError('cannot parse line "{}"'.format(line))
            data[i] = [timestamp, current, voltage, total_energy]

        self.interval_start_timestamp = data[:-1, 0] * 1e-6
        self.interval_duration = (data[1:, 0] - data[:-1, 0]) * 1e-6
        self.interval_power = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / (
            (data[1:, 0] - data[:-1, 0]) * 1e-6
        )

        m_duration_us = data[-1, 0] - data[0, 0]

        self.sample_rate = data_count / (m_duration_us * 1e-6)

        logger.debug(
            "got {} samples with {} seconds of log data ({} Hz)".format(
                data_count, m_duration_us * 1e-6, self.sample_rate
            ),
        )

        return (
            self.interval_start_timestamp,
            self.interval_duration,
            self.interval_power,
        )

    def ts_to_index(self, timestamp):
        """
        Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index.

        Returns the index of the interval which timestamp is part of.
        """
        return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp))

    def _ts_to_index(self, timestamp, left_index, right_index):
        if left_index == right_index:
            return left_index
        if left_index + 1 == right_index:
            return left_index

        mid_index = left_index + (right_index - left_index) // 2

        # I'm feeling lucky
        if (
            timestamp > self.interval_start_timestamp[mid_index]
            and timestamp
            <= self.interval_start_timestamp[mid_index]
            + self.interval_duration[mid_index]
        ):
            return mid_index

        if timestamp <= self.interval_start_timestamp[mid_index]:
            return self._ts_to_index(timestamp, left_index, mid_index)

        return self._ts_to_index(timestamp, mid_index, right_index)

    def analyze_states(self, traces, offline_index: int):
        u"""
        Split log data into states and transitions and return duration, energy, and mean power for each element.

        :param traces: expected traces, needed to synchronize with the measurement.
            traces is a list of runs, traces[*]['trace'] is a single run
            (i.e. a list of states and transitions, starting with a transition
            and ending with a state).
        :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes

        :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
        :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
        :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`

        :returns: maybe returns list of states and transitions, both starting andending with a state.
            Each element is a dict containing:
            * `isa`: 'state' or 'transition'
            * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
            * `raw_mean`: Mittelwert der Rohwerte
            * `raw_std`: Standardabweichung der Rohwerte
            * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
            * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
            * `us`: Dauer
            if isa == 'transition, it also contains:
            * `timeout`: Dauer des vorherigen Zustands
            * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """

        first_sync = self.find_first_sync()

        energy_trace = list()

        expected_transitions = list()
        for trace_number, trace in enumerate(traces):
            for state_or_transition_number, state_or_transition in enumerate(
                trace["trace"]
            ):
                if state_or_transition["isa"] == "transition":
                    try:
                        expected_transitions.append(
                            (
                                state_or_transition["name"],
                                state_or_transition["online_aggregates"]["duration"][
                                    offline_index
                                ]
                                * 1e-6,
                            )
                        )
                    except IndexError:
                        self.errors.append(
                            'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
                                state_or_transition_number,
                                state_or_transition["name"],
                                trace_number,
                                offline_index,
                            )
                        )
                        return energy_trace

        next_barcode = first_sync

        for name, duration in expected_transitions:
            bc, start, stop, end = self.find_barcode(next_barcode)
            if bc is None:
                logger.error('did not find transition "{}"'.format(name))
                break
            next_barcode = end + self.state_duration + duration
            logger.debug(
                '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(
                    offline_index, bc, start, stop, end
                ),
            )
            if bc != name:
                logger.error('mismatch: expected "{}", got "{}"'.format(name, bc),)
            logger.debug(
                "{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format(
                    offline_index, end, end + duration
                ),
            )

            transition_start_index = self.ts_to_index(end)
            transition_done_index = self.ts_to_index(end + duration) + 1
            state_start_index = transition_done_index
            state_done_index = (
                self.ts_to_index(end + duration + self.state_duration) + 1
            )

            logger.debug(
                "{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds".format(
                    offline_index,
                    transition_start_index / self.sample_rate,
                    transition_done_index / self.sample_rate,
                ),
            )

            transition_power_W = self.interval_power[
                transition_start_index:transition_done_index
            ]

            transition = {
                "isa": "transition",
                "W_mean": np.mean(transition_power_W),
                "W_std": np.std(transition_power_W),
                "s": duration,
                "s_coarse": self.interval_start_timestamp[transition_done_index]
                - self.interval_start_timestamp[transition_start_index],
            }

            if self.with_traces:
                transition["uW"] = transition_power_W * 1e6

            energy_trace.append(transition)

            if len(energy_trace) > 1:
                energy_trace[-1]["W_mean_delta_prev"] = (
                    energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
                )

            state_power_W = self.interval_power[state_start_index:state_done_index]
            state = {
                "isa": "state",
                "W_mean": np.mean(state_power_W),
                "W_std": np.std(state_power_W),
                "s": self.state_duration,
                "s_coarse": self.interval_start_timestamp[state_done_index]
                - self.interval_start_timestamp[state_start_index],
            }

            if self.with_traces:
                state["uW"] = state_power_W * 1e6

            energy_trace.append(state)

            energy_trace[-2]["W_mean_delta_next"] = (
                energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
            )

        expected_transition_count = len(expected_transitions)
        recovered_transition_ount = len(energy_trace) // 2

        if expected_transition_count != recovered_transition_ount:
            self.errors.append(
                "Expected {:d} transitions, got {:d}".format(
                    expected_transition_count, recovered_transition_ount
                )
            )

        return energy_trace

    def find_first_sync(self):
        # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
        sync_threshold_power = (
            np.median(self.interval_power[: int(3 * self.sample_rate)])
            + self.led_power / 3
        )
        for i, ts in enumerate(self.interval_start_timestamp):
            if ts > 2 and self.interval_power[i] > sync_threshold_power:
                return self.interval_start_timestamp[i - 300]
        return None

    def find_barcode(self, start_ts):
        """
        Return absolute position and content of the next barcode following `start_ts`.

        :param interval_ts: list of start timestamps (one per measurement interval) [s]
        :param interval_power: mean power per measurement interval [W]
        :param start_ts: timestamp at which to start looking for a barcode [s]
        """

        for i, ts in enumerate(self.interval_start_timestamp):
            if ts >= start_ts:
                start_position = i
                break

        # Lookaround: 100 ms in both directions
        lookaround = int(0.1 * self.sample_rate)

        # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
        sync_threshold_power = (
            np.median(
                self.interval_power[
                    start_position - lookaround : start_position + lookaround
                ]
            )
            + self.led_power / 3
        )

        logger.debug(
            "looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format(
                start_ts, sync_threshold_power * 1e3
            ),
        )

        sync_area_start = None
        sync_start_ts = None
        sync_area_end = None
        sync_end_ts = None
        for i, ts in enumerate(self.interval_start_timestamp):
            if (
                sync_area_start is None
                and ts >= start_ts
                and self.interval_power[i] > sync_threshold_power
            ):
                sync_area_start = i - 300
                sync_start_ts = ts
            if (
                sync_area_start is not None
                and sync_area_end is None
                and ts > sync_start_ts + self.min_barcode_duration
                and (
                    ts > sync_start_ts + self.max_barcode_duration
                    or abs(sync_threshold_power - self.interval_power[i])
                    > self.led_power
                )
            ):
                sync_area_end = i
                sync_end_ts = ts
                break

        barcode_data = self.interval_power[sync_area_start:sync_area_end]

        logger.debug(
            "barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format(
                sync_start_ts, sync_end_ts, len(barcode_data)
            ),
        )

        bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)

        if bc is None:
            return None, None, None, None

        start_ts = self.interval_start_timestamp[sync_area_start + start]
        stop_ts = self.interval_start_timestamp[sync_area_start + stop]

        end_ts = (
            stop_ts + self.module_duration * padding_bits + self.quiet_zone_duration
        )

        # barcode content, barcode start timestamp, barcode stop timestamp, barcode end (stop + padding) timestamp
        return bc, start_ts, stop_ts, end_ts

    def find_barcode_in_power_data(self, barcode_data):

        min_power = np.min(barcode_data)
        max_power = np.max(barcode_data)

        # zbar seems to be confused by measurement (and thus image) noise
        # inside of barcodes. As our barcodes are only 1px high, this is
        # likely not trivial to fix.
        # -> Create a black and white (not grayscale) image to avoid this.
        # Unfortunately, this decreases resilience against background noise
        # (e.g. a not-exactly-idle peripheral device or CPU interrupts).
        image_data = np.around(
            1 - ((barcode_data - min_power) / (max_power - min_power))
        )
        image_data *= 255

        # zbar only returns the complete barcode position if it is at least
        # two pixels high. For a 1px barcode, it only returns its right border.

        width = len(image_data)
        height = 2

        image_data = bytes(map(int, image_data)) * height

        # img = Image.frombytes('L', (width, height), image_data).resize((width, 100))
        # img.save('/tmp/test-{}.png'.format(os.getpid()))

        zbimg = zbar.Image(width, height, "Y800", image_data)
        scanner = zbar.ImageScanner()
        scanner.parse_config("enable")

        if scanner.scan(zbimg):
            (sym,) = zbimg.symbols
            content = sym.data
            try:
                sym_start = sym.location[1][0]
            except IndexError:
                sym_start = 0
            sym_end = sym.location[0][0]

            match = re.fullmatch(r"T(\d+)", content)
            if match:
                content = self.transition_names[int(match.group(1))]

            # PTALog barcode generation operates on bytes, so there may be
            # additional non-barcode padding (encoded as LED off / image white).
            # Calculate the amount of extra bits to determine the offset until
            # the transition starts.
            padding_bits = len(Code128(sym.data, charset="B").modules) % 8

            # sym_start leaves out the first two bars, but we don't do anything about that here
            # sym_end leaves out the last three bars, each of which is one padding bit long.
            # as a workaround, we unconditionally increment padding_bits by three.
            padding_bits += 3

            return content, sym_start, sym_end, padding_bits
        else:
            logger.warning("unable to find barcode")
            return None, None, None, None


class MIMOSA:
    """
    MIMOSA log loader for DFA traces with auto-calibration.

    Expects a MIMOSA log file generated via dfatool and a dfatool-generated
    benchmark. A MIMOSA log consists of a series of measurements. Each measurement
    gives the total charge (in pJ) and binary buzzer/trigger value during a 10µs interval.

    There must be a calibration run consisting of at least two seconds with disconnected DUT,
    two seconds with 1 kOhm (984 Ohm), and two seconds with 100 kOhm (99013 Ohm) resistor at
    the start. The first ten seconds of data are reserved for calbiration and must not contain
    measurements, as trigger/buzzer signals are ignored in this time range.

    Resulting data is a list of state/transition/state/transition/... measurements.
    """

    def __init__(self, voltage: float, shunt: int, with_traces=False):
        """
        Initialize MIMOSA loader for a specific voltage and shunt setting.

        :param voltage: MIMOSA DUT supply voltage (V)
        :para mshunt: MIMOSA Shunt (Ohms)
        """
        self.voltage = voltage
        self.shunt = shunt
        self.with_traces = with_traces
        self.r1 = 984  # "1k"
        self.r2 = 99013  # "100k"
        self.errors = list()

    def charge_to_current_nocal(self, charge):
        u"""
        Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration.

        :param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file`

        :returns: numpy array of mean currents (µA per 10µs)
        """
        ua_max = 1.836 / self.shunt * 1000000
        ua_step = ua_max / 65535
        return charge * ua_step

    def _load_tf(self, tf):
        u"""
        Load MIMOSA log data from an open `tarfile` instance.

        :param tf: `tarfile` instance

        :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
        """
        num_bytes = tf.getmember("/tmp/mimosa//mimosa_scale_1.tmp").size
        charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
        triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
        with tf.extractfile("/tmp/mimosa//mimosa_scale_1.tmp") as f:
            content = f.read()
            iterator = struct.iter_unpack("<I", content)
            i = 0
            for word in iterator:
                charges[i] = word[0] >> 4
                triggers[i] = (word[0] & 0x08) >> 3
                i += 1
        return charges, triggers

    def load_data(self, raw_data):
        u"""
        Load MIMOSA log data from a MIMOSA log file passed as raw byte string

        :param raw_data: MIMOSA log file, passed as raw byte string

        :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
        """
        with io.BytesIO(raw_data) as data_object:
            with tarfile.open(fileobj=data_object) as tf:
                return self._load_tf(tf)

    def load_file(self, filename):
        u"""
        Load MIMOSA log data from a MIMOSA log file

        :param filename: MIMOSA log file

        :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
        """
        with tarfile.open(filename) as tf:
            return self._load_tf(tf)

    def currents_nocal(self, charges):
        u"""
        Convert charges (pJ per 10µs) to mean currents without accounting for calibration.

        :param charges: numpy array of charges (pJ per 10µs)

        :returns: numpy array of currents (mean µA per 10µs)"""
        ua_max = 1.836 / self.shunt * 1000000
        ua_step = ua_max / 65535
        return charges.astype(np.double) * ua_step

    def trigger_edges(self, triggers):
        """
        Return indexes of trigger edges (both 0->1 and 1->0) in log data.

        Ignores the first 10 seconds, which are used for calibration and may
        contain bogus triggers due to DUT resets.

        :param triggers: trigger array (int, 0/1) as returned by load_data

        :returns: list of int (trigger indices, e.g. [2000000, ...] means the first trigger appears in charges/currents interval 2000000 -> 20s after start of measurements. Keep in mind that each interval is 10µs long, not 1µs, so index values are not µs timestamps)
        """
        trigidx = []

        if len(triggers) < 1000000:
            self.errors.append("MIMOSA log is too short")
            return trigidx

        prevtrig = triggers[999999]

        # if the first trigger is high (i.e., trigger/buzzer pin is active before the benchmark starts),
        # something went wrong and are unable to determine when the first
        # transition starts.
        if prevtrig != 0:
            self.errors.append(
                "Unable to find start of first transition (log starts with trigger == {} != 0)".format(
                    prevtrig
                )
            )

        # if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends),
        # it terminated in the middle of a transition -- meaning that it was not
        # measured in its entirety.
        if triggers[-1] != 0:
            self.errors.append("Log ends during a transition".format(prevtrig))

        # the device is reset for MIMOSA calibration in the first 10s and may
        # send bogus interrupts -> bogus triggers
        for i in range(1000000, triggers.shape[0]):
            trig = triggers[i]
            if trig != prevtrig:
                # Due to MIMOSA's integrate-read-reset cycle, the charge/current
                # interval belonging to this trigger comes two intervals (20µs) later
                trigidx.append(i + 2)
            prevtrig = trig
        return trigidx

    def calibration_edges(self, currents):
        u"""
        Return start/stop indexes of calibration measurements.

        :param currents: uncalibrated currents as reported by MIMOSA. For best results,
            it may help to use a running mean, like so:
            `currents = running_mean(currents_nocal(..., 10))`

        :returns: indices of calibration events in MIMOSA data:
            (disconnect start, disconnect stop, R1 (1k) start, R1 (1k) stop, R2 (100k) start, R2 (100k) stop)
            indices refer to charges/currents arrays, so 0 refers to the first 10µs interval, 1 to the second, and so on.
        """
        r1idx = 0
        r2idx = 0
        ua_r1 = self.voltage / self.r1 * 1000000
        # first second may be bogus
        for i in range(100000, len(currents)):
            if r1idx == 0 and currents[i] > ua_r1 * 0.6:
                r1idx = i
            elif (
                r1idx != 0
                and r2idx == 0
                and i > (r1idx + 180000)
                and currents[i] < ua_r1 * 0.4
            ):
                r2idx = i
        # 2s disconnected, 2s r1, 2s r2  with r1 < r2  ->  ua_r1 > ua_r2
        # allow 5ms buffer in both directions to account for bouncing relais contacts
        return (
            r1idx - 180500,
            r1idx - 500,
            r1idx + 500,
            r2idx - 500,
            r2idx + 500,
            r2idx + 180500,
        )

    def calibration_function(self, charges, cal_edges):
        u"""
        Calculate calibration function from previously determined calibration edges.

        :param charges: raw charges from MIMOSA
        :param cal_edges: calibration edges as returned by calibration_edges

        :returns: (calibration_function, calibration_data):
            calibration_function -- charge in pJ (float) -> current in uA (float).
                Converts the amount of charge in a 10 µs interval to the
                mean current during the same interval.
            calibration_data -- dict containing the following keys:
                edges -- calibration points in the log file, in µs
                offset -- ...
                offset2 --  ...
                slope_low -- ...
                slope_high -- ...
                add_low -- ...
                add_high -- ..
                r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW
                r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW
                r1_err_uW -- mean error of uncalibrated data at 1 kOhm
                r1_std_uW -- stddev at 1 kOhm
                r2_err_uW -- mean error at 100 kOhm
                r2_std_uW -- stddev at 100 kOhm
        """
        dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
        if dis_start < 0:
            dis_start = 0
        chg_r0 = charges[dis_start:dis_end]
        chg_r1 = charges[r1_start:r1_end]
        chg_r2 = charges[r2_start:r2_end]
        cal_0_mean = np.mean(chg_r0)
        cal_r1_mean = np.mean(chg_r1)
        cal_r2_mean = np.mean(chg_r2)

        ua_r1 = self.voltage / self.r1 * 1000000
        ua_r2 = self.voltage / self.r2 * 1000000

        if cal_r2_mean > cal_0_mean:
            b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
        else:
            logger.warning("0 uA == %.f uA during calibration" % (ua_r2))
            b_lower = 0

        b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)

        a_lower = -b_lower * cal_0_mean
        a_upper = -b_upper * cal_r2_mean

        if self.shunt == 680:
            # R1 current is higher than shunt range -> only use R2 for calibration
            def calfunc(charge):
                if charge < cal_0_mean:
                    return 0
                else:
                    return charge * b_lower + a_lower

        else:

            def calfunc(charge):
                if charge < cal_0_mean:
                    return 0
                if charge <= cal_r2_mean:
                    return charge * b_lower + a_lower
                else:
                    return charge * b_upper + a_upper + ua_r2

        caldata = {
            "edges": [x * 10 for x in cal_edges],
            "offset": cal_0_mean,
            "offset2": cal_r2_mean,
            "slope_low": b_lower,
            "slope_high": b_upper,
            "add_low": a_lower,
            "add_high": a_upper,
            "r0_err_uW": np.mean(self.currents_nocal(chg_r0)) * self.voltage,
            "r0_std_uW": np.std(self.currents_nocal(chg_r0)) * self.voltage,
            "r1_err_uW": (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
            "r1_std_uW": np.std(self.currents_nocal(chg_r1)) * self.voltage,
            "r2_err_uW": (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
            "r2_std_uW": np.std(self.currents_nocal(chg_r2)) * self.voltage,
        }

        # print("if charge < %f : return 0" % cal_0_mean)
        # print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
        # print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))

        return calfunc, caldata

    """
    def calcgrad(self, currents, threshold):
        grad = np.gradient(running_mean(currents * self.voltage, 10))
        # len(grad) == len(currents) - 9
        subst = []
        lastgrad = 0
        for i in range(len(grad)):
            # minimum substate duration: 10ms
            if np.abs(grad[i]) > threshold and i - lastgrad > 50:
                # account for skew introduced by running_mean and current
                # ramp slope (parasitic capacitors etc.)
                subst.append(i+10)
                lastgrad = i
        if lastgrad != i:
            subst.append(i+10)
        return subst

    # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
    # Sache nach noetiger threshold. postprocessing mit
    # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
    # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
    # TODO bei substates / index foo den offset durch running_mean beachten
    # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
    # uebergaenge dadurch?
    def gradfoo(self, currents):
        gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
        gradmin = np.min(gradients)
        gradmax = np.max(gradients)
        threshold = np.mean([gradmin, gradmax])
        gradidx = self.calcgrad(currents, threshold)
        num_substates = 2
        while len(gradidx) != num_substates:
            if gradmax - gradmin < 0.1:
                # We did our best
                return threshold, gradidx
            if len(gradidx) > num_substates:
                gradmin = threshold
            else:
                gradmax = threshold
            threshold = np.mean([gradmin, gradmax])
            gradidx = self.calcgrad(currents, threshold)
        return threshold, gradidx
    """

    def analyze_states(self, charges, trigidx, ua_func):
        u"""
        Split log data into states and transitions and return duration, energy, and mean power for each element.

        :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
        :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
        :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`

        :returns: list of states and transitions, both starting andending with a state.
            Each element is a dict containing:
            * `isa`: 'state' or 'transition'
            * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
            * `raw_mean`: Mittelwert der Rohwerte
            * `raw_std`: Standardabweichung der Rohwerte
            * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
            * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
            * `us`: Dauer
            if isa == 'transition, it also contains:
            * `timeout`: Dauer des vorherigen Zustands
            * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """
        previdx = 0
        is_state = True
        iterdata = []

        # The last state (between the last transition and end of file) may also
        # be important. Pretend it ends when the log ends.
        trigger_indices = trigidx.copy()
        trigger_indices.append(len(charges))

        for idx in trigger_indices:
            range_raw = charges[previdx:idx]
            range_ua = ua_func(range_raw)
            substates = {}

            if previdx != 0 and idx - previdx > 200:
                thr, subst = 0, []  # self.gradfoo(range_ua)
                if len(subst):
                    statelist = []
                    prevsubidx = 0
                    for subidx in subst:
                        statelist.append(
                            {
                                "duration": (subidx - prevsubidx) * 10,
                                "uW_mean": np.mean(
                                    range_ua[prevsubidx:subidx] * self.voltage
                                ),
                                "uW_std": np.std(
                                    range_ua[prevsubidx:subidx] * self.voltage
                                ),
                            }
                        )
                        prevsubidx = subidx
                    substates = {
                        "threshold": thr,
                        "states": statelist,
                    }

            isa = "state"
            if not is_state:
                isa = "transition"

            data = {
                "isa": isa,
                "clip_rate": np.mean(range_raw == 65535),
                "raw_mean": np.mean(range_raw),
                "raw_std": np.std(range_raw),
                "uW_mean": np.mean(range_ua * self.voltage),
                "uW_std": np.std(range_ua * self.voltage),
                "us": (idx - previdx) * 10,
            }

            if self.with_traces:
                data["uW"] = range_ua * self.voltage

            if "states" in substates:
                data["substates"] = substates
                ssum = np.sum(list(map(lambda x: x["duration"], substates["states"])))
                if ssum != data["us"]:
                    logger.warning("duration %d vs %d" % (data["us"], ssum))

            if isa == "transition":
                # subtract average power of previous state
                # (that is, the state from which this transition originates)
                data["uW_mean_delta_prev"] = data["uW_mean"] - iterdata[-1]["uW_mean"]
                # placeholder to avoid extra cases in the analysis
                data["uW_mean_delta_next"] = data["uW_mean"]
                data["timeout"] = iterdata[-1]["us"]
            elif len(iterdata) > 0:
                # subtract average power of next state
                # (the state into which this transition leads)
                iterdata[-1]["uW_mean_delta_next"] = (
                    iterdata[-1]["uW_mean"] - data["uW_mean"]
                )

            iterdata.append(data)

            previdx = idx
            is_state = not is_state
        return iterdata