1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
|
#!/usr/bin/env python3
import csv
from itertools import chain, combinations
import io
import json
import numpy as np
import os
from scipy.cluster.vq import kmeans2
import struct
import sys
import tarfile
from multiprocessing import Pool
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def is_numeric(n):
if n == None:
return False
try:
int(n)
return True
except ValueError:
return False
def float_or_nan(n):
if n == None:
return np.nan
try:
return float(n)
except ValueError:
return np.nan
def append_if_set(aggregate, data, key):
if key in data:
aggregate.append(data[key])
def mean_or_none(arr):
if len(arr):
return np.mean(arr)
return -1
def aggregate_measures(aggregate, actual):
aggregate_array = np.array([aggregate] * len(actual))
return regression_measures(aggregate_array, np.array(actual))
def regression_measures(predicted, actual):
if type(predicted) != np.ndarray:
raise ValueError('first arg must be ndarray, is {}'.format(type(predicted)))
if type(actual) != np.ndarray:
raise ValueError('second arg must be ndarray, is {}'.format(type(actual)))
deviations = predicted - actual
if len(deviations) == 0:
return {}
measures = {
'mae' : np.mean(np.abs(deviations), dtype=np.float64),
'msd' : np.mean(deviations**2, dtype=np.float64),
'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64),
'ssr' : np.sum(deviations**2, dtype=np.float64),
}
if np.all(actual != 0):
measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure
if np.all(np.abs(predicted) + np.abs(actual) != 0):
measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100
return measures
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
class Keysight:
def __init__(self):
pass
def load_data(self, filename):
with open(filename) as f:
for i, l in enumerate(f):
pass
timestamps = np.ndarray((i-3), dtype=float)
currents = np.ndarray((i-3), dtype=float)
# basically seek back to start
with open(filename) as f:
for _ in range(4):
next(f)
reader = csv.reader(f, delimiter=',')
for i, row in enumerate(reader):
timestamps[i] = float(row[0])
currents[i] = float(row[2]) * -1
return timestamps, currents
def _preprocess_measurement(measurement):
setup = measurement['setup']
mim = MIMOSA(float(setup['mimosa_voltage']), int(setup['mimosa_shunt']))
charges, triggers = mim.load_data(measurement['content'])
trigidx = mim.trigger_edges(triggers)
triggers = []
cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10))
calfunc, caldata = mim.calibration_function(charges, cal_edges)
vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
processed_data = {
'fileno' : measurement['fileno'],
'info' : measurement['info'],
'triggers' : len(trigidx),
'first_trig' : trigidx[0] * 10,
'calibration' : caldata,
'trace' : mim.analyze_states(charges, trigidx, vcalfunc)
}
return processed_data
class RawData:
def __init__(self, filenames):
self.filenames = filenames.copy()
self.traces_by_fileno = []
self.setup_by_fileno = []
self.version = 0
self.preprocessed = False
def _state_is_too_short(self, online, offline, state_duration, next_transition):
# We cannot control when an interrupt causes a state to be left
if next_transition['plan']['level'] == 'epilogue':
return False
# Note: state_duration is stored as ms, not us
return offline['us'] < state_duration * 500
def _state_is_too_long(self, online, offline, state_duration, prev_transition):
# If the previous state was left by an interrupt, we may have some
# waiting time left over. So it's okay if the current state is longer
# than expected.
if prev_transition['plan']['level'] == 'epilogue':
return False
# state_duration is stored as ms, not us
return offline['us'] > state_duration * 1500
def _measurement_is_valid(self, processed_data):
setup = self.setup_by_fileno[processed_data['fileno']]
traces = self.traces_by_fileno[processed_data['fileno']]
state_duration = setup['state_duration']
# Check trigger count
sched_trigger_count = 0
for run in traces:
sched_trigger_count += len(run['trace'])
if sched_trigger_count != processed_data['triggers']:
processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
got = processed_data['triggers'],
exp = sched_trigger_count
)
return False
# Check state durations. Very short or long states can indicate a
# missed trigger signal which wasn't detected due to duplicate
# triggers elsewhere
online_datapoints = []
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = processed_data['trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if online_trace_part['isa'] != offline_trace_part['isa']:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
off_isa = offline_trace_part['isa'],
on_isa = online_trace_part['isa'])
return False
if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED':
online_prev_transition = traces[online_run_idx]['trace'][online_trace_part_idx-1]
online_next_transition = traces[online_run_idx]['trace'][online_trace_part_idx+1]
try:
if self._state_is_too_short(online_trace_part, offline_trace_part, state_duration, online_next_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
dur = offline_trace_part['us'])
return False
if self._state_is_too_long(online_trace_part, offline_trace_part, state_duration, online_prev_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
dur = offline_trace_part['us'])
return False
except KeyError:
pass
# TODO es gibt next_transitions ohne 'plan'
return True
def _merge_measurement_into_online_data(self, measurement):
online_datapoints = []
traces = self.traces_by_fileno[measurement['fileno']]
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = measurement['trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if not 'offline' in online_trace_part:
online_trace_part['offline'] = [offline_trace_part]
else:
online_trace_part['offline'].append(offline_trace_part)
if not 'offline_aggregates' in online_trace_part:
online_trace_part['offline_aggregates'] = {
'power' : [],
'duration' : [],
'power_std' : [],
'energy' : [],
'clipping' : [],
}
if online_trace_part['isa'] == 'transition':
online_trace_part['offline_aggregates']['timeout'] = []
online_trace_part['offline_aggregates']['rel_energy_prev'] = []
online_trace_part['offline_aggregates']['rel_energy_next'] = []
# Note: All state/transitions are 20us "too long" due to injected
# active wait states. These are needed to work around MIMOSA's
# relatively low sample rate of 100 kHz (10us) and removed here.
online_trace_part['offline_aggregates']['power'].append(
offline_trace_part['uW_mean'])
online_trace_part['offline_aggregates']['duration'].append(
offline_trace_part['us'] - 20)
online_trace_part['offline_aggregates']['power_std'].append(
offline_trace_part['uW_std'])
online_trace_part['offline_aggregates']['energy'].append(
offline_trace_part['uW_mean'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['clipping'].append(
offline_trace_part['clip_rate'])
if online_trace_part['isa'] == 'transition':
online_trace_part['offline_aggregates']['timeout'].append(
offline_trace_part['timeout'])
online_trace_part['offline_aggregates']['rel_energy_prev'].append(
offline_trace_part['uW_mean_delta_prev'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['rel_energy_next'].append(
offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20))
def _concatenate_analyzed_traces(self):
self.traces = []
for trace in self.traces_by_fileno:
self.traces.extend(trace)
def get_preprocessed_data(self, verbose = True):
self.verbose = verbose
if self.preprocessed:
return self.traces
if self.version == 0:
self.preprocess_0()
self.preprocessed = True
return self.traces
# Loads raw MIMOSA data and turns it into measurements which are ready to
# be analyzed.
def preprocess_0(self):
mim_files = []
for i, filename in enumerate(self.filenames):
with tarfile.open(filename) as tf:
self.setup_by_fileno.append(json.load(tf.extractfile('setup.json')))
self.traces_by_fileno.append(json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json')))
for member in tf.getmembers():
_, extension = os.path.splitext(member.name)
if extension == '.mim':
mim_files.append({
'content' : tf.extractfile(member).read(),
'fileno' : i,
'info' : member,
'setup' : self.setup_by_fileno[i],
'traces' : self.traces_by_fileno[i],
})
with Pool() as pool:
measurements = pool.map(_preprocess_measurement, mim_files)
num_valid = 0
for measurement in measurements:
if self._measurement_is_valid(measurement):
self._merge_measurement_into_online_data(measurement)
num_valid += 1
elif self.verbose:
print('[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
ar = self.filenames[measurement['fileno']],
m = measurement['info'].name,
e = measurement['error']))
if self.verbose:
print('[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
num_valid = num_valid,
num_total = len(measurements)))
self._concatenate_analyzed_traces()
self.preprocessing_stats = {
'num_runs' : len(measurements),
'num_valid' : num_valid
}
class EnergyModel:
def __init__(self, preprocessed_data):
self.traces = preprocessed_data
self.by_name = {}
self.by_arg = {}
self.by_param = {}
self.by_trace = {}
np.seterr('raise')
for runidx, run in enumerate(self.traces):
# if opts['ignore-trace-idx'] != runidx
for i, elem in enumerate(run['trace']):
if elem['name'] != 'UNINITIALIZED':
self._load_run_elem(i, elem)
self._aggregate_to_ndarray(self.by_name)
def _aggregate_to_ndarray(self, aggregate):
for elem in aggregate.values():
for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
if key in elem:
elem[key] = np.array(elem[key])
def _add_data_to_aggregate(self, aggregate, key, element):
if not key in aggregate:
aggregate[key] = {
'isa' : element['isa']
}
for datakey in element['offline_aggregates'].keys():
aggregate[key][datakey] = []
for datakey, dataval in element['offline_aggregates'].items():
aggregate[key][datakey].extend(dataval)
def _load_run_elem(self, i, elem):
self._add_data_to_aggregate(self.by_name, elem['name'], elem)
def get_static(self):
static_model = {}
for name, elem in self.by_name.items():
static_model[name] = {}
for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
if key in elem:
try:
static_model[name][key] = np.median(elem[key])
except RuntimeWarning:
print('[W] Got no data for {} {}'.format(name, key))
except FloatingPointError as fpe:
print('[W] Got no data for {} {}: {}'.format(name, key, fpe))
def static_median_getter(name, key, **kwargs):
return static_model[name][key]
return static_median_getter
def get_static_using_mean(self):
static_model = {}
for name, elem in self.by_name.items():
static_model[name] = {}
for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
if key in elem:
try:
static_model[name][key] = np.mean(elem[key])
except RuntimeWarning:
print('[W] Got no data for {} {}'.format(name, key))
except FloatingPointError as fpe:
print('[W] Got no data for {} {}: {}'.format(name, key, fpe))
def static_mean_getter(name, key, **kwargs):
return static_model[name][key]
return static_mean_getter
def states(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'state', self.by_name.keys())))
def transitions(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'transition', self.by_name.keys())))
def assess(self, model_function):
for name, elem in sorted(self.by_name.items()):
print('{}:'.format(name))
if elem['isa'] == 'state':
predicted_data = np.array(list(map(lambda x: model_function(name, 'power'), elem['power'])))
measures = regression_measures(predicted_data, elem['power'])
if 'smape' in measures:
print(' power: {:.2f}% / {:.0f} µW'.format(
measures['smape'], measures['mae']
))
else:
print(' power: {:.0f} µW'.format(
measures['mae']
))
else:
for key in ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']:
predicted_data = np.array(list(map(lambda x: model_function(name, key), elem[key])))
measures = regression_measures(predicted_data, elem[key])
if 'smape' in measures:
print(' {:10s}: {:.2f}% / {:.0f}'.format(
key, measures['smape'], measures['mae']
))
else:
print(' {:10s}: {:.0f}'.format(
key, measures['mae']
))
class MIMOSA:
def __init__(self, voltage, shunt):
self.voltage = voltage
self.shunt = shunt
self.r1 = 984 # "1k"
self.r2 = 99013 # "100k"
def charge_to_current_nocal(self, charge):
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charge * ua_step
def _load_tf(self, tf):
num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
content = f.read()
iterator = struct.iter_unpack('<I', content)
i = 0
for word in iterator:
charges[i] = (word[0] >> 4)
triggers[i] = (word[0] & 0x08) >> 3
i += 1
return charges, triggers
def load_data(self, raw_data):
with io.BytesIO(raw_data) as data_object:
with tarfile.open(fileobj = data_object) as tf:
return self._load_tf(tf)
def currents_nocal(self, charges):
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charges.astype(np.double) * ua_step
def trigger_edges(self, triggers):
trigidx = []
prevtrig = triggers[0]
# the device is reset for MIMOSA calibration in the first 10s and may
# send bogus interrupts -> bogus triggers
for i in range(1000000, triggers.shape[0]):
trig = triggers[i]
if trig != prevtrig:
# Due to MIMOSA's integrate-read-reset cycle, the trigger
# appears two points (20µs) before the corresponding data
trigidx.append(i+2)
prevtrig = trig
return trigidx
def calibration_edges(self, currents):
r1idx = 0
r2idx = 0
ua_r1 = self.voltage / self.r1 * 1000000
# first second may be bogus
for i in range(100000, len(currents)):
if r1idx == 0 and currents[i] > ua_r1 * 0.6:
r1idx = i
elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4:
r2idx = i
# 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2
# allow 5ms buffer in both directions to account for bouncing relais contacts
return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500
def calibration_function(self, charges, cal_edges):
dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
if dis_start < 0:
dis_start = 0
chg_r0 = charges[dis_start:dis_end]
chg_r1 = charges[r1_start:r1_end]
chg_r2 = charges[r2_start:r2_end]
cal_0_mean = np.mean(chg_r0)
cal_0_std = np.std(chg_r0)
cal_r1_mean = np.mean(chg_r1)
cal_r1_std = np.std(chg_r1)
cal_r2_mean = np.mean(chg_r2)
cal_r2_std = np.std(chg_r2)
ua_r1 = self.voltage / self.r1 * 1000000
ua_r2 = self.voltage / self.r2 * 1000000
if cal_r2_mean > cal_0_mean:
b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
else:
print('[W] 0 uA == %.f uA during calibration' % (ua_r2))
b_lower = 0
b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
b_total = (ua_r1 - 0) / (cal_r1_mean - cal_0_mean)
a_lower = -b_lower * cal_0_mean
a_upper = -b_upper * cal_r2_mean
a_total = -b_total * cal_0_mean
if self.shunt == 680:
# R1 current is higher than shunt range -> only use R2 for calibration
def calfunc(charge):
if charge < cal_0_mean:
return 0
else:
return charge * b_lower + a_lower
else:
def calfunc(charge):
if charge < cal_0_mean:
return 0
if charge <= cal_r2_mean:
return charge * b_lower + a_lower
else:
return charge * b_upper + a_upper + ua_r2
caldata = {
'edges' : [x * 10 for x in cal_edges],
'offset': cal_0_mean,
'offset2' : cal_r2_mean,
'slope_low' : b_lower,
'slope_high' : b_upper,
'add_low' : a_lower,
'add_high' : a_upper,
'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage,
'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage,
'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage,
'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage,
}
#print("if charge < %f : return 0" % cal_0_mean)
#print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
#print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))
return calfunc, caldata
def calcgrad(self, currents, threshold):
grad = np.gradient(running_mean(currents * self.voltage, 10))
# len(grad) == len(currents) - 9
subst = []
lastgrad = 0
for i in range(len(grad)):
# minimum substate duration: 10ms
if np.abs(grad[i]) > threshold and i - lastgrad > 50:
# account for skew introduced by running_mean and current
# ramp slope (parasitic capacitors etc.)
subst.append(i+10)
lastgrad = i
if lastgrad != i:
subst.append(i+10)
return subst
# TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
# Sache nach noetiger threshold. postprocessing mit
# "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
# ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
# TODO bei substates / index foo den offset durch running_mean beachten
# TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
# uebergaenge dadurch?
def gradfoo(self, currents):
gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
gradmin = np.min(gradients)
gradmax = np.max(gradients)
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
num_substates = 2
while len(gradidx) != num_substates:
if gradmax - gradmin < 0.1:
# We did our best
return threshold, gradidx
if len(gradidx) > num_substates:
gradmin = threshold
else:
gradmax = threshold
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
return threshold, gradidx
def analyze_states(self, charges, trigidx, ua_func):
previdx = 0
is_state = True
iterdata = []
for idx in trigidx:
range_raw = charges[previdx:idx]
range_ua = ua_func(range_raw)
substates = {}
if previdx != 0 and idx - previdx > 200:
thr, subst = 0, [] #self.gradfoo(range_ua)
if len(subst):
statelist = []
prevsubidx = 0
for subidx in subst:
statelist.append({
'duration': (subidx - prevsubidx) * 10,
'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage),
'uW_std' : np.std(range_ua[prevsubidx : subidx] * self.voltage),
})
prevsubidx = subidx
substates = {
'threshold' : thr,
'states' : statelist,
}
isa = 'state'
if not is_state:
isa = 'transition'
data = {
'isa': isa,
'clip_rate' : np.mean(range_raw == 65535),
'raw_mean': np.mean(range_raw),
'raw_std' : np.std(range_raw),
'uW_mean' : np.mean(range_ua * self.voltage),
'uW_std' : np.std(range_ua * self.voltage),
'us' : (idx - previdx) * 10,
}
if 'states' in substates:
data['substates'] = substates
ssum = np.sum(list(map(lambda x : x['duration'], substates['states'])))
if ssum != data['us']:
print("ERR: duration %d vs %d" % (data['us'], ssum))
if isa == 'transition':
# subtract average power of previous state
# (that is, the state from which this transition originates)
data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean']
# placeholder to avoid extra cases in the analysis
data['uW_mean_delta_next'] = data['uW_mean']
data['timeout'] = iterdata[-1]['us']
elif len(iterdata) > 0:
# subtract average power of next state
# (the state into which this transition leads)
iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean']
iterdata.append(data)
previdx = idx
is_state = not is_state
return iterdata
|