1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
|
#!/usr/bin/env python3
import numpy as np
import logging
import os
import scipy
from bisect import bisect_left, bisect_right
logger = logging.getLogger(__name__)
class DataProcessor:
def __init__(
self,
sync_data,
et_timestamps,
et_power,
hw_statechange_indexes=list(),
offline_index=None,
):
"""
Creates DataProcessor object.
:param sync_data: input timestamps (SigrokResult)
:param energy_data: List of EnergyTrace datapoints
"""
self.raw_sync_timestamps = []
# high-precision LA/Timer timestamps at synchronization events
self.sync_timestamps = []
# low-precision energytrace timestamps
self.et_timestamps = et_timestamps
# energytrace power values
self.et_power_values = et_power
self.hw_statechange_indexes = hw_statechange_indexes
self.offline_index = offline_index
self.sync_data = sync_data
self.start_offset = 0
# TODO determine automatically based on minimum (or p1) power draw over measurement area + X
# use 0.02 for HFXT runs
self.power_sync_watt = 0.011
self.power_sync_len = 0.7
self.power_sync_max_outliers = 2
def run(self):
"""
Main Function to remove unwanted data, get synchronization points, add the offset and add drift.
:return: None
"""
# Remove bogus data before / after the measurement
time_stamp_data = self.sync_data.timestamps
for x in range(1, len(time_stamp_data)):
if time_stamp_data[x] - time_stamp_data[x - 1] > 1.3:
time_stamp_data = time_stamp_data[x:]
break
for x in reversed(range(1, len(time_stamp_data))):
if time_stamp_data[x] - time_stamp_data[x - 1] > 1.3:
time_stamp_data = time_stamp_data[:x]
break
# Each synchronization pulse consists of two LogicAnalyzer pulses, so four
# entries in time_stamp_data (rising edge, falling edge, rising edge, falling edge).
# If we have less then twelve entries, we observed no transitions and don't even have
# valid synchronization data. In this case, we bail out.
if len(time_stamp_data) < 12:
raise RuntimeError(
f"LogicAnalyzer sync data has length {len(time_stamp_data)}, expected >= 12"
)
self.raw_sync_timestamps = time_stamp_data
# NEW
datasync_timestamps = []
sync_start = 0
outliers = 0
pre_outliers_ts = None
# TODO only consider the first few and the last few seconds for sync points
for i, timestamp in enumerate(self.et_timestamps):
power = self.et_power_values[i]
if power > 0:
if power > self.power_sync_watt:
if sync_start is None:
sync_start = timestamp
outliers = 0
else:
# Sync point over or outliers
if outliers == 0:
pre_outliers_ts = timestamp
outliers += 1
if outliers > self.power_sync_max_outliers:
if sync_start is not None:
if (pre_outliers_ts - sync_start) > self.power_sync_len:
datasync_timestamps.append(
(sync_start, pre_outliers_ts)
)
sync_start = None
if power > self.power_sync_watt:
if (self.et_timestamps[-1] - sync_start) > self.power_sync_len:
datasync_timestamps.append((sync_start, pre_outliers_ts))
# time_stamp_data contains an entry for each level change on the Logic Analyzer input.
# So, time_stamp_data[0] is the first low-to-high transition, time_stamp_data[2] the second, etc.
# -> time_stamp_data[2] is the low-to-high transition indicating the end of the first sync pulse
# -> time_stamp_data[-8] is the low-to-high transition indicating the start of the first after-measurement sync pulse
start_timestamp = datasync_timestamps[0][1]
start_offset = start_timestamp - time_stamp_data[2]
end_timestamp = datasync_timestamps[-2][0]
end_offset = end_timestamp - (time_stamp_data[-8] + start_offset)
logger.debug(
f"Iteration #{self.offline_index}: Measurement area: ET timestamp range [{start_timestamp}, {end_timestamp}]"
)
logger.debug(
f"Iteration #{self.offline_index}: Measurement area: LA timestamp range [{time_stamp_data[2]}, {time_stamp_data[-8]}]"
)
logger.debug(
f"Iteration #{self.offline_index}: Start/End offsets: {start_offset} / {end_offset}"
)
if abs(end_offset) > 10:
raise RuntimeError(
f"Iteration #{self.offline_index}: synchronization end_offset == {end_offset}. It should be no more than a few seconds."
)
# adjust start offset
with_offset = np.array(time_stamp_data) + start_offset
logger.debug(
f"Iteration #{self.offline_index}: Measurement area with offset: LA timestamp range [{with_offset[2]}, {with_offset[-8]}]"
)
# adjust stop offset (may be different from start offset due to drift caused by
# random temperature fluctuations)
with_drift = self.addDrift(
with_offset, end_timestamp, end_offset, start_timestamp
)
logger.debug(
f"Iteration #{self.offline_index}: Measurement area with drift: LA timestamp range [{with_drift[2]}, {with_drift[-8]}]"
)
self.sync_timestamps = with_drift
# adjust intermediate timestamps. There is a small error between consecutive measurements,
# again due to drift caused by random temperature fluctuation. The error increases with
# increased distance from synchronization points: It is negligible at the start and end
# of the measurement and may be quite high around the middle. That's just the bounds, though --
# you may also have a low error in the middle and error peaks elsewhere.
# As the start and stop timestamps have already been synchronized, we only adjust
# actual transition timestamps here.
if os.getenv("DFATOOL_COMPENSATE_DRIFT"):
if len(self.hw_statechange_indexes):
# measurement was performed with EnergyTrace++
# (i.e., with cpu state annotations)
with_drift_compensation = self.compensateDriftPlusplus(with_drift[4:-8])
else:
with_drift_compensation = self.compensateDrift(with_drift[4:-8])
try:
self.sync_timestamps[4:-8] = with_drift_compensation
except ValueError:
logger.error(
f"Iteration #{self.offline_index}: drift-compensated sequence is too short ({len(with_drift_compensation)}/{len(self.sync_timestamps[4:-8])-1})"
)
raise
def addDrift(self, input_timestamps, end_timestamp, end_offset, start_timestamp):
"""
Add drift to datapoints
:param input_timestamps: List of timestamps (float list)
:param end_timestamp: Timestamp of first EnergyTrace datapoint at the second-to-last sync point
:param end_offset: the time between end_timestamp and the timestamp of synchronisation signal
:param start_timestamp: Timestamp of last EnergyTrace datapoint at the first sync point
:return: List of modified timestamps (float list)
"""
endFactor = 1 + (end_offset / ((end_timestamp - end_offset) - start_timestamp))
# endFactor assumes that the end of the first sync pulse is at timestamp 0.
# Then, timestamps with drift := timestamps * endFactor.
# As this is not the case (the first sync pulse ends at start_timestamp > 0), we shift the data by first
# removing start_timestamp, then multiplying with endFactor, and then re-adding the start_timestamp.
sync_timestamps_with_drift = (
input_timestamps - start_timestamp
) * endFactor + start_timestamp
return sync_timestamps_with_drift
def compensateDriftPlusplus(self, sync_timestamps):
"""Use hardware state changes reported by EnergyTrace++ to determine transition timestamps."""
expected_transition_start_timestamps = sync_timestamps[::2]
compensated_timestamps = list()
drift = 0
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
expected_end_ts = sync_timestamps[i * 2 + 1]
et_timestamps_start = bisect_left(
self.et_timestamps, expected_start_ts - 5e-3
)
et_timestamps_end = bisect_right(
self.et_timestamps, expected_start_ts + 5e-3
)
candidate_indexes = list()
for index in self.hw_statechange_indexes:
if et_timestamps_start <= index <= et_timestamps_end:
candidate_indexes.append(index)
if len(candidate_indexes) == 2:
drift = self.et_timestamps[candidate_indexes[0]] - expected_start_ts
compensated_timestamps.append(expected_start_ts + drift)
compensated_timestamps.append(expected_end_ts + drift)
return compensated_timestamps
def compensateDrift(self, sync_timestamps):
"""Use ruptures (e.g. Pelt, Dynp) to determine transition timestamps."""
from dfatool.pelt import PELT
# TODO die Anzahl Changepoints ist a priori bekannt, es könnte mit ruptures.Dynp statt ruptures.Pelt besser funktionieren.
# Vielleicht sollte man auch "rbf" statt "l1" nutzen.
# "rbf" und "l2" scheinen ähnlich gut zu funktionieren, l2 ist schneller.
# PELT does not find changepoints for transitions which span just four or five data points (i.e., transitions shorter than ~2ms).
# Workaround: Double the data rate passed to PELT by interpolation ("stretch=2")
pelt = PELT(with_multiprocessing=False, stretch=2)
expected_transition_start_timestamps = sync_timestamps[::2]
transition_start_candidate_weights = list()
drift = 0
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
expected_end_ts = sync_timestamps[2 * i + 1]
# assumption: maximum deviation between expected and actual timestamps is 5ms.
# We use ±10ms to have some contetx for PELT
et_timestamps_start = bisect_left(
self.et_timestamps, expected_start_ts - 10e-3
)
et_timestamps_end = bisect_right(
self.et_timestamps, expected_end_ts + 10e-3
)
timestamps = self.et_timestamps[et_timestamps_start : et_timestamps_end + 1]
energy_data = self.et_power_values[
et_timestamps_start : et_timestamps_end + 1
]
candidate_weight = dict()
# TODO for greedy mode, perform changepoint detection between greedy steps
# (-> the expected changepoint area is well-known, Dynp with 1/2 changepoints
# should work much better than "somewhere in these 20ms there should be a transition")
if 0:
penalties = (None,)
elif os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY"):
penalties = (int(os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY")),)
else:
penalties = (1, 2, 5, 10, 15, 20)
for penalty in penalties:
for changepoint in pelt.get_changepoints(
energy_data, penalty=penalty, num_changepoints=1
):
if changepoint in candidate_weight:
candidate_weight[changepoint] += 1
else:
candidate_weight[changepoint] = 1
# TODO ist expected_start_ts wirklich eine gute Referenz? Wenn vor einer Transition ein UART-Dump
# liegt, dürfte expected_end_ts besser sein, dann muss allerdings bei der compensation wieder auf
# start_ts zurückgerechnet werden.
transition_start_candidate_weights.append(
list(
map(
lambda k: (
timestamps[k] - expected_start_ts,
timestamps[k] - expected_end_ts,
candidate_weight[k],
),
candidate_weight.keys(),
)
)
)
if os.getenv("DFATOOL_COMPENSATE_DRIFT_GREEDY"):
return self.compensate_drift_greedy(
sync_timestamps, transition_start_candidate_weights
)
return self.compensate_drift_graph(
sync_timestamps, transition_start_candidate_weights
)
def compensate_drift_graph(
self, sync_timestamps, transition_start_candidate_weights
):
# Algorithm: Obtain the shortest path in a layered graph made up from
# transition candidates. Each node represents a transition candidate timestamp, and each layer represents a transition.
# Each node in layer i contains a directed edge to each node in layer i+1.
# The edge weight is the drift delta between the two nodes. So, if,
# node X (transition i, candidate a) has a drift of 5, and node Y
# (transition i+1, candidate b) has a drift of -2, the weight is 7.
# The first and last layer of the graph consists of a single node
# with a drift of 0, representing the start / end synchronization pulse, respectively.
prev_nodes = [0]
prev_drifts = [0]
edge_srcs = list()
edge_dsts = list()
csr_weights = list()
node_drifts = list()
# (transition index) -> [candidate 0/start node, candidate 0/end node, candidate 1/start node, ...]
nodes_by_transition_index = dict()
# (node number) -> (transition index, candidate index, is_end)
# (-> transition_start_candidate_weights[transition index][candidate index][is_end])
transition_by_node = dict()
compensated_timestamps = list()
# default: up to two nodes may be skipped
max_skip_count = 2
if os.getenv("DFATOOL_DC_MAX_SKIP"):
max_skip_count = int(os.getenv("DFATOOL_DC_MAX_SKIP"))
for transition_index, candidates in enumerate(
transition_start_candidate_weights
):
new_nodes = list()
new_drifts = list()
i_offset = prev_nodes[-1] + 1
nodes_by_transition_index[transition_index] = list()
for new_node_i, (new_drift_start, new_drift_end, _) in enumerate(
candidates
):
for is_end, new_drift in enumerate((new_drift_start, new_drift_end)):
new_node = i_offset + new_node_i * 2 + is_end
nodes_by_transition_index[transition_index].append(new_node)
transition_by_node[new_node] = (
transition_index,
new_node_i,
is_end,
)
new_nodes.append(new_node)
new_drifts.append(new_drift)
node_drifts.append(new_drift)
for prev_node_i, prev_node in enumerate(prev_nodes):
prev_drift = prev_drifts[prev_node_i]
edge_srcs.append(prev_node)
edge_dsts.append(new_node)
delta_drift = np.abs(prev_drift - new_drift)
# TODO evaluate "delta_drift ** 2" or similar nonlinear
# weights -> further penalize large drift deltas
csr_weights.append(delta_drift)
# a transition's candidate list may be empty
if len(new_nodes):
prev_nodes = new_nodes
prev_drifts = new_drifts
# add an end node for shortest path search
# (end node == final sync, so drift == 0)
new_node = prev_nodes[-1] + 1
for prev_node_i, prev_node in enumerate(prev_nodes):
prev_drift = prev_drifts[prev_node_i]
edge_srcs.append(prev_node)
edge_dsts.append(new_node)
csr_weights.append(np.abs(prev_drift))
# Add "skip" edges spanning from transition i to transition i+n (n > 1).
# These avoid synchronization errors caused by transitions wich are
# not found by changepiont detection, as long as they are sufficiently rare.
for transition_index, candidates in enumerate(
transition_start_candidate_weights
):
for skip_count in range(2, max_skip_count + 2):
if transition_index < skip_count:
continue
for from_node in nodes_by_transition_index[
transition_index - skip_count
]:
for to_node in nodes_by_transition_index[transition_index]:
(
from_trans_i,
from_candidate_i,
from_is_end,
) = transition_by_node[from_node]
to_trans_i, to_candidate_i, to_is_end = transition_by_node[
to_node
]
assert transition_index - skip_count == from_trans_i
assert transition_index == to_trans_i
from_drift = transition_start_candidate_weights[from_trans_i][
from_candidate_i
][from_is_end]
to_drift = transition_start_candidate_weights[to_trans_i][
to_candidate_i
][to_is_end]
edge_srcs.append(from_node)
edge_dsts.append(to_node)
csr_weights.append(
np.abs(from_drift - to_drift) + (skip_count - 1) * 270e-6
)
sm = scipy.sparse.csr_matrix(
(csr_weights, (edge_srcs, edge_dsts)), shape=(new_node + 1, new_node + 1)
)
dm, predecessors = scipy.sparse.csgraph.shortest_path(
sm, return_predecessors=True, indices=0
)
nodes = list()
pred = predecessors[-1]
while pred > 0:
nodes.append(pred)
pred = predecessors[pred]
nodes = list(reversed(nodes))
# first and last node are not included in "nodes" as they represent
# the start/stop sync pulse (and not a transition with sync candidates)
prev_transition = -1
for i, node in enumerate(nodes):
transition, _, _ = transition_by_node[node]
drift = node_drifts[node]
while transition - prev_transition > 1:
prev_drift = node_drifts[nodes[i - 1]]
prev_transition += 1
expected_start_ts = sync_timestamps[prev_transition * 2] + prev_drift
expected_end_ts = sync_timestamps[prev_transition * 2 + 1] + prev_drift
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
expected_start_ts = sync_timestamps[transition * 2] + drift
expected_end_ts = sync_timestamps[transition * 2 + 1] + drift
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
prev_transition = transition
# handle skips over the last few transitions, if any
transition = len(transition_start_candidate_weights) - 1
while transition - prev_transition > 0:
prev_drift = node_drifts[nodes[-1]]
prev_transition += 1
expected_start_ts = sync_timestamps[prev_transition * 2] + prev_drift
expected_end_ts = sync_timestamps[prev_transition * 2 + 1] + prev_drift
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
if os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"):
import json
from dfatool.utils import NpEncoder
expected_transition_start_timestamps = sync_timestamps[::2]
with open(os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"), "w") as f:
json.dump(
[
expected_transition_start_timestamps,
transition_start_candidate_weights,
],
f,
cls=NpEncoder,
)
return compensated_timestamps
def compensate_drift_greedy(
self, sync_timestamps, transition_start_candidate_weights
):
drift = 0
expected_transition_start_timestamps = sync_timestamps[::2]
compensated_timestamps = list()
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
candidates = sorted(
map(
lambda x: x[0] + expected_start_ts,
transition_start_candidate_weights[i],
)
)
expected_start_ts += drift
expected_end_ts = sync_timestamps[2 * i + 1] + drift
# choose the next candidates around the expected sync point.
start_right_sync = bisect_left(candidates, expected_start_ts)
start_left_sync = start_right_sync - 1
end_right_sync = bisect_left(candidates, expected_end_ts)
end_left_sync = end_right_sync - 1
start_left_diff = expected_start_ts - candidates[start_left_sync]
start_right_diff = candidates[start_right_sync] - expected_start_ts
end_left_diff = expected_end_ts - candidates[end_left_sync]
end_right_diff = candidates[end_right_sync] - expected_end_ts
drift_candidates = (
start_left_diff,
start_right_diff,
end_left_diff,
end_right_diff,
)
min_drift_i = np.argmin(drift_candidates)
min_drift = min(drift_candidates)
if min_drift < 5e-4:
if min_drift_i % 2 == 0:
# left
compensated_timestamps.append(expected_start_ts - min_drift)
compensated_timestamps.append(expected_end_ts - min_drift)
drift -= min_drift
else:
# right
compensated_timestamps.append(expected_start_ts + min_drift)
compensated_timestamps.append(expected_end_ts + min_drift)
drift += min_drift
else:
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
if os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"):
import json
from dfatool.utils import NpEncoder
expected_transition_start_timestamps = sync_timestamps[::2]
with open(os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"), "w") as f:
json.dump(
[
expected_transition_start_timestamps,
transition_start_candidate_weights,
],
f,
cls=NpEncoder,
)
return compensated_timestamps
def export_sync(self):
# [1st trans start, 1st trans stop, 2nd trans start, 2nd trans stop, ...]
sync_timestamps = list()
for i in range(4, len(self.sync_timestamps) - 8, 2):
sync_timestamps.append(
(self.sync_timestamps[i], self.sync_timestamps[i + 1])
)
# EnergyTrace timestamps
timestamps = self.et_timestamps
# EnergyTrace power values
power = self.et_power_values
return {"sync": sync_timestamps, "timestamps": timestamps, "power": power}
def plot(self, annotateData=None):
"""
Plots the power usage and the timestamps by logic analyzer
:param annotateData: List of Strings with labels, only needed if annotated plots are wished
:return: None
"""
def calculateRectangleCurve(timestamps, min_value=0, max_value=0.160):
import numpy as np
data = []
for ts in timestamps:
data.append(ts)
data.append(ts)
a = np.empty((len(data),))
a[0::4] = min_value
a[1::4] = max_value
a[2::4] = max_value
a[3::4] = min_value
return data, a # plotting by columns
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
if annotateData:
annot = ax.annotate(
"",
xy=(0, 0),
xytext=(20, 20),
textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"),
)
annot.set_visible(True)
rectCurve_with_drift = calculateRectangleCurve(
self.sync_timestamps, max_value=max(self.et_power_values)
)
plt.plot(self.et_timestamps, self.et_power_values, label="Leistung")
plt.plot(self.et_timestamps, np.gradient(self.et_power_values), label="dP/dt")
plt.plot(
rectCurve_with_drift[0],
rectCurve_with_drift[1],
"-g",
label="Synchronisationsignale mit Driftfaktor",
)
plt.xlabel("Zeit von EnergyTrace [s]")
plt.ylabel("Leistung [W]")
leg = plt.legend()
def getDataText(x):
# print(x)
dl = len(annotateData)
for i, xt in enumerate(self.sync_timestamps):
if xt > x and i >= 4 and i - 5 < dl:
return f"SoT: {annotateData[i - 5]}"
def update_annot(x, y, name):
annot.xy = (x, y)
text = name
annot.set_text(text)
annot.get_bbox_patch().set_alpha(0.4)
def hover(event):
if event.xdata and event.ydata:
annot.set_visible(False)
update_annot(event.xdata, event.ydata, getDataText(event.xdata))
annot.set_visible(True)
fig.canvas.draw_idle()
if annotateData:
fig.canvas.mpl_connect("motion_notify_event", hover)
plt.show()
def getStatesdfatool(self, state_sleep, with_traces=False, algorithm=False):
"""
Calculates the length and energy usage of the states
:param state_sleep: Length in seconds of one state, needed for cutting out the UART Sending cycle
:param algorithm: possible usage of accuracy algorithm / not implemented yet
:returns: returns list of states and transitions, starting with a transition and ending with astate
Each element is a dict containing:
* `isa`: 'state' or 'transition'
* `W_mean`: Mittelwert der Leistungsaufnahme
* `W_std`: Standardabweichung der Leistungsaufnahme
* `s`: Dauer
"""
if algorithm:
raise NotImplementedError
end_transition_ts = None
timestamps_sync_start = 0
energy_trace_new = list()
# sync_timestamps[3] is the start of the first (UNINITIALIZED) state (and the end of the benchmark-start sync pulse)
# sync_timestamps[-8] is the end of the final state and the corresponding UART dump (and the start of the benchmark-end sync pulses)
self.trigger_high_precision_timestamps = self.sync_timestamps[3:-7]
self.trigger_edges = list()
for ts in self.trigger_high_precision_timestamps:
# Let ts be the trigger timestamp corresponding to the end of a transition.
# We are looking for an index i such that et_timestamps[i-1] <= ts < et_timestamps[i].
# Then, et_power_values[i] (the mean power in the interval et_timestamps[i-1] .. et_timestamps[i]) is affected by the transition and
# et_power_values[i+1] is not affected by it.
#
# bisect_right does just what we need; bisect_left would correspond to et_timestamps[i-1] < ts <= et_timestamps[i].
# Not that this is a moot point in practice, as ts ≠ et_timestamps[j] for almost all j. Also, the resolution of
# et_timestamps is several decades lower than the resolution of trigger_high_precision_timestamps.
self.trigger_edges.append(bisect_right(self.et_timestamps, ts))
# Loop over transitions. We start at the end of the first transition and handle the transition and the following state.
# We then proceed to the end of the second transition, etc.
for i in range(2, len(self.trigger_high_precision_timestamps), 2):
prev_state_start_index = self.trigger_edges[i - 2]
prev_state_stop_index = self.trigger_edges[i - 1]
transition_start_index = self.trigger_edges[i - 1]
transition_stop_index = self.trigger_edges[i]
state_start_index = self.trigger_edges[i]
state_stop_index = self.trigger_edges[i + 1]
# If a transition takes less time than the energytrace measurement interval, its start and stop index may be the same.
# In this case, et_power_values[transition_start_index] is the only data point affected by the transition.
# We use the et_power_values slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
# to increment transition_stop_index by 1 to end at et_power_values[transition_start_index]
# (as et_power_values[transition_start_index : transition_start_index+1 ] == [et_power_values[transition_start_index])
if transition_stop_index == transition_start_index:
transition_stop_index += 1
prev_state_duration = (
self.trigger_high_precision_timestamps[i + 1]
- self.trigger_high_precision_timestamps[i]
)
transition_duration = (
self.trigger_high_precision_timestamps[i]
- self.trigger_high_precision_timestamps[i - 1]
)
state_duration = (
self.trigger_high_precision_timestamps[i + 1]
- self.trigger_high_precision_timestamps[i]
)
# some states are followed by a UART dump of log data. This causes an increase in CPU energy
# consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
# If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
# In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
# instead of high-precision sync data
if (
self.et_timestamps[prev_state_stop_index]
- self.et_timestamps[prev_state_start_index]
> state_sleep
):
prev_state_stop_index = bisect_right(
self.et_timestamps,
self.et_timestamps[prev_state_start_index] + state_sleep,
)
prev_state_duration = (
self.et_timestamps[prev_state_stop_index]
- self.et_timestamps[prev_state_start_index]
)
if (
self.et_timestamps[state_stop_index]
- self.et_timestamps[state_start_index]
> state_sleep
):
state_stop_index = bisect_right(
self.et_timestamps,
self.et_timestamps[state_start_index] + state_sleep,
)
state_duration = (
self.et_timestamps[state_stop_index]
- self.et_timestamps[state_start_index]
)
prev_state_power = self.et_power_values[
prev_state_start_index:prev_state_stop_index
]
transition_timestamps = self.et_timestamps[
transition_start_index:transition_stop_index
]
transition_power = self.et_power_values[
transition_start_index:transition_stop_index
]
state_timestamps = self.et_timestamps[state_start_index:state_stop_index]
state_power = self.et_power_values[state_start_index:state_stop_index]
transition = {
"isa": "transition",
"W_mean": np.mean(transition_power),
"W_std": np.std(transition_power),
"s": transition_duration,
"count_dp": len(transition_power),
}
if with_traces:
transition["plot"] = (
transition_timestamps - transition_timestamps[0],
transition_power,
)
state = {
"isa": "state",
"W_mean": np.mean(state_power),
"W_std": np.std(state_power),
"s": state_duration,
}
if with_traces:
state["plot"] = (state_timestamps - state_timestamps[0], state_power)
transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
prev_state_power
)
transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
energy_trace_new.append(transition)
energy_trace_new.append(state)
return energy_trace_new
|