summaryrefslogtreecommitdiff
path: root/lib/model.py
blob: a953c46e27536871863d687b7c9d2d5bda638768 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
#!/usr/bin/env python3

import logging
import numpy as np
import kconfiglib
from scipy import optimize
from sklearn.metrics import r2_score
from multiprocessing import Pool
from .automata import PTA
from .functions import analytic
from .functions import AnalyticFunction
from .parameters import ParamStats
from .utils import is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple
from .utils import by_name_to_by_param, match_parameter_values

logger = logging.getLogger(__name__)
arg_support_enabled = True


def aggregate_measures(aggregate: float, actual: list) -> dict:
    """
    Calculate error measures for model value on data list.

    arguments:
    aggregate -- model value (float or int)
    actual -- real-world / reference values (list of float or int)

    return value:
    See regression_measures
    """
    aggregate_array = np.array([aggregate] * len(actual))
    return regression_measures(aggregate_array, np.array(actual))


def regression_measures(predicted: np.ndarray, actual: np.ndarray):
    """
    Calculate error measures by comparing model values to reference values.

    arguments:
    predicted -- model values (np.ndarray)
    actual -- real-world / reference values (np.ndarray)

    Returns a dict containing the following measures:
    mae -- Mean Absolute Error
    mape -- Mean Absolute Percentage Error,
            if all items in actual are non-zero (NaN otherwise)
    smape -- Symmetric Mean Absolute Percentage Error,
             if no 0,0-pairs are present in actual and predicted (NaN otherwise)
    msd -- Mean Square Deviation
    rmsd -- Root Mean Square Deviation
    ssr -- Sum of Squared Residuals
    rsq -- R^2 measure, see sklearn.metrics.r2_score
    count -- Number of values
    """
    if type(predicted) != np.ndarray:
        raise ValueError("first arg must be ndarray, is {}".format(type(predicted)))
    if type(actual) != np.ndarray:
        raise ValueError("second arg must be ndarray, is {}".format(type(actual)))
    deviations = predicted - actual
    # mean = np.mean(actual)
    if len(deviations) == 0:
        return {}
    measures = {
        "mae": np.mean(np.abs(deviations), dtype=np.float64),
        "msd": np.mean(deviations ** 2, dtype=np.float64),
        "rmsd": np.sqrt(np.mean(deviations ** 2), dtype=np.float64),
        "ssr": np.sum(deviations ** 2, dtype=np.float64),
        "rsq": r2_score(actual, predicted),
        "count": len(actual),
    }

    # rsq_quotient = np.sum((actual - mean)**2, dtype=np.float64) * np.sum((predicted - mean)**2, dtype=np.float64)

    if np.all(actual != 0):
        measures["mape"] = np.mean(np.abs(deviations / actual)) * 100  # bad measure
    else:
        measures["mape"] = np.nan
    if np.all(np.abs(predicted) + np.abs(actual) != 0):
        measures["smape"] = (
            np.mean(np.abs(deviations) / ((np.abs(predicted) + np.abs(actual)) / 2))
            * 100
        )
    else:
        measures["smape"] = np.nan
    # if np.all(rsq_quotient != 0):
    #    measures['rsq'] = (np.sum((actual - mean) * (predicted - mean), dtype=np.float64)**2) / rsq_quotient

    return measures


class ParallelParamFit:
    """
    Fit a set of functions on parameterized measurements.

    One parameter is variale, all others are fixed. Reports the best-fitting
    function type for each parameter.
    """

    def __init__(self, by_param):
        """Create a new ParallelParamFit object."""
        self.fit_queue = []
        self.by_param = by_param

    def enqueue(
        self,
        state_or_tran,
        attribute,
        param_index,
        param_name,
        safe_functions_enabled=False,
        param_filter=None,
    ):
        """
        Add state_or_tran/attribute/param_name to fit queue.

        This causes fit() to compute the best-fitting function for this model part.
        """
        self.fit_queue.append(
            {
                "key": [state_or_tran, attribute, param_name, param_filter],
                "args": [
                    self.by_param,
                    state_or_tran,
                    attribute,
                    param_index,
                    safe_functions_enabled,
                    param_filter,
                ],
            }
        )

    def fit(self):
        """
        Fit functions on previously enqueue data.

        Fitting is one in parallel with one process per core.

        Results can be accessed using the public ParallelParamFit.results object.
        """
        with Pool() as pool:
            self.results = pool.map(_try_fits_parallel, self.fit_queue)

    def get_result(self, name, attribute, param_filter: dict = None):
        """
        Parse and sanitize fit results for state/transition/... 'name' and model attribute 'attribute'.

        Filters out results where the best function is worse (or not much better than) static mean/median estimates.

        :param name: state/transition/... name, e.g. 'TX'
        :param attribute: model attribute, e.g. 'duration'
        :param param_filter:
        :returns: dict with fit result (see `_try_fits`) for each successfully fitted parameter. E.g. {'param 1': {'best' : 'function name', ...} }
        """
        fit_result = dict()
        for result in self.results:
            if (
                result["key"][0] == name
                and result["key"][1] == attribute
                and result["key"][3] == param_filter
                and result["result"]["best"] is not None
            ):  # dürfte an ['best'] != None liegen-> Fit für gefilterten Kram schlägt fehl?
                this_result = result["result"]
                if this_result["best_rmsd"] >= min(
                    this_result["mean_rmsd"], this_result["median_rmsd"]
                ):
                    logger.debug(
                        "Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})".format(
                            name,
                            attribute,
                            result["key"][2],
                            this_result["best_rmsd"],
                            this_result["mean_rmsd"],
                            this_result["median_rmsd"],
                        )
                    )
                # See notes on depends_on_param
                elif this_result["best_rmsd"] >= 0.8 * min(
                    this_result["mean_rmsd"], this_result["median_rmsd"]
                ):
                    logger.debug(
                        "Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ref ({:.0f}, {:.0f})".format(
                            name,
                            attribute,
                            result["key"][2],
                            this_result["best_rmsd"],
                            this_result["mean_rmsd"],
                            this_result["median_rmsd"],
                        )
                    )
                else:
                    fit_result[result["key"][2]] = this_result
        return fit_result


def _try_fits_parallel(arg):
    """
    Call _try_fits(*arg['args']) and return arg['key'] and the _try_fits result.

    Must be a global function as it is called from a multiprocessing Pool.
    """
    return {"key": arg["key"], "result": _try_fits(*arg["args"])}


def _try_fits(
    by_param,
    state_or_tran,
    model_attribute,
    param_index,
    safe_functions_enabled=False,
    param_filter: dict = None,
):
    """
    Determine goodness-of-fit for prediction of `by_param[(state_or_tran, *)][model_attribute]` dependence on `param_index` using various functions.

    This is done by varying `param_index` while keeping all other parameters constant and doing one least squares optimization for each function and for each combination of the remaining parameters.
    The value of the parameter corresponding to `param_index` (e.g. txpower or packet length) is the sole input to the model function.
    Only numeric parameter values (as determined by `utils.is_numeric`) are used for fitting, non-numeric values such as None or enum strings are ignored.
    Fitting is only performed if at least three distinct parameter values exist in `by_param[(state_or_tran, *)]`.

    :returns:  a dictionary with the following elements:
        best -- name of the best-fitting function (see `analytic.functions`). `None` in case of insufficient data.
        best_rmsd -- mean Root Mean Square Deviation of best-fitting function over all combinations of the remaining parameters
        mean_rmsd -- mean Root Mean Square Deviation of a reference model using the mean of its respective input data as model value
        median_rmsd -- mean Root Mean Square Deviation of a reference model using the median of its respective input data as model value
        results -- mean goodness-of-fit measures for the individual functions. See `analytic.functions` for keys and `aggregate_measures` for values

    :param by_param: measurements partitioned by state/transition/... name and parameter values.
    Example: `{('foo', (0, 2)): {'bar': [2]}, ('foo', (0, 4)): {'bar': [4]}, ('foo', (0, 6)): {'bar': [6]}}`

    :param state_or_tran: state/transition/... name for which goodness-of-fit will be calculated (first element of by_param key tuple).
    Example: `'foo'`

    :param model_attribute: attribute for which goodness-of-fit will be calculated.
    Example: `'bar'`

    :param param_index: index of the parameter used as model input
    :param safe_functions_enabled: Include "safe" variants of functions with limited argument range.
    :param param_filter: Only use measurements whose parameters match param_filter for fitting.
    """

    functions = analytic.functions(safe_functions_enabled=safe_functions_enabled)

    for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
        # We might remove elements from 'functions' while iterating over
        # its keys. A generator will not allow this, so we need to
        # convert to a list.
        function_names = list(functions.keys())
        for function_name in function_names:
            function_object = functions[function_name]
            if is_numeric(param_key[1][param_index]) and not function_object.is_valid(
                param_key[1][param_index]
            ):
                functions.pop(function_name, None)

    raw_results = dict()
    raw_results_by_param = dict()
    ref_results = {"mean": list(), "median": list()}
    results = dict()
    results_by_param = dict()

    seen_parameter_combinations = set()

    # for each parameter combination:
    for param_key in filter(
        lambda x: x[0] == state_or_tran
        and remove_index_from_tuple(x[1], param_index)
        not in seen_parameter_combinations
        and len(by_param[x]["param"])
        and match_parameter_values(by_param[x]["param"][0], param_filter),
        by_param.keys(),
    ):
        X = []
        Y = []
        num_valid = 0
        num_total = 0

        # Ensure that each parameter combination is only optimized once. Otherwise, with parameters (1, 2, 5), (1, 3, 5), (1, 4, 5) and param_index == 1,
        # the parameter combination (1, *, 5) would be optimized three times, both wasting time and biasing results towards more frequently occuring combinations of non-param_index parameters
        seen_parameter_combinations.add(
            remove_index_from_tuple(param_key[1], param_index)
        )

        # for each value of the parameter denoted by param_index (all other parameters remain the same):
        for k, v in filter(
            lambda kv: param_slice_eq(kv[0], param_key, param_index), by_param.items()
        ):
            num_total += 1
            if is_numeric(k[1][param_index]):
                num_valid += 1
                X.extend([float(k[1][param_index])] * len(v[model_attribute]))
                Y.extend(v[model_attribute])

        if num_valid > 2:
            X = np.array(X)
            Y = np.array(Y)
            other_parameters = remove_index_from_tuple(k[1], param_index)
            raw_results_by_param[other_parameters] = dict()
            results_by_param[other_parameters] = dict()
            for function_name, param_function in functions.items():
                if function_name not in raw_results:
                    raw_results[function_name] = dict()
                error_function = param_function.error_function
                res = optimize.least_squares(
                    error_function, [0, 1], args=(X, Y), xtol=2e-15
                )
                measures = regression_measures(param_function.eval(res.x, X), Y)
                raw_results_by_param[other_parameters][function_name] = measures
                for measure, error_rate in measures.items():
                    if measure not in raw_results[function_name]:
                        raw_results[function_name][measure] = list()
                    raw_results[function_name][measure].append(error_rate)
                # print(function_name, res, measures)
            mean_measures = aggregate_measures(np.mean(Y), Y)
            ref_results["mean"].append(mean_measures["rmsd"])
            raw_results_by_param[other_parameters]["mean"] = mean_measures
            median_measures = aggregate_measures(np.median(Y), Y)
            ref_results["median"].append(median_measures["rmsd"])
            raw_results_by_param[other_parameters]["median"] = median_measures

    if not len(ref_results["mean"]):
        # Insufficient data for fitting
        # print('[W] Insufficient data for fitting {}/{}/{}'.format(state_or_tran, model_attribute, param_index))
        return {"best": None, "best_rmsd": np.inf, "results": results}

    for (
        other_parameter_combination,
        other_parameter_results,
    ) in raw_results_by_param.items():
        best_fit_val = np.inf
        best_fit_name = None
        results = dict()
        for function_name, result in other_parameter_results.items():
            if len(result) > 0:
                results[function_name] = result
                rmsd = result["rmsd"]
                if rmsd < best_fit_val:
                    best_fit_val = rmsd
                    best_fit_name = function_name
        results_by_param[other_parameter_combination] = {
            "best": best_fit_name,
            "best_rmsd": best_fit_val,
            "mean_rmsd": results["mean"]["rmsd"],
            "median_rmsd": results["median"]["rmsd"],
            "results": results,
        }

    best_fit_val = np.inf
    best_fit_name = None
    results = dict()
    for function_name, result in raw_results.items():
        if len(result) > 0:
            results[function_name] = {}
            for measure in result.keys():
                results[function_name][measure] = np.mean(result[measure])
            rmsd = results[function_name]["rmsd"]
            if rmsd < best_fit_val:
                best_fit_val = rmsd
                best_fit_name = function_name

    return {
        "best": best_fit_name,
        "best_rmsd": best_fit_val,
        "mean_rmsd": np.mean(ref_results["mean"]),
        "median_rmsd": np.mean(ref_results["median"]),
        "results": results,
        "results_by_other_param": results_by_param,
    }


def _num_args_from_by_name(by_name):
    num_args = dict()
    for key, value in by_name.items():
        if "args" in value:
            num_args[key] = len(value["args"][0])
    return num_args


class AnalyticModel:
    """
    Parameter-aware analytic energy/data size/... model.

    Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.

    These provide measurements aggregated by (function/state/...) name
    and (for by_param) parameter values. Layout:
    dictionary with one key per name ('send', 'TX', ...) or
    one key per name and parameter combination
    (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).

    Parameter values must be ordered corresponding to the lexically sorted parameter names.

    Each element is in turn a dict with the following elements:
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    - for each attribute mentioned in 'attributes': A list with measurements.
      All list except for 'attributes' must have the same length.

    For example:
    parameters = ['foo_count', 'irrelevant']
    by_name = {
        'foo' : [1, 1, 2],
        'bar' : [5, 6, 7],
        'attributes' : ['foo', 'bar'],
        'param' : [[1, 0], [1, 0], [2, 0]]
    }

    methods:
    get_static -- return static (parameter-unaware) model.
    get_param_lut -- return parameter-aware look-up-table model. Cannot model parameter combinations not present in by_param.
    get_fitted -- return parameter-aware model using fitted functions for behaviour prediction.

    variables:
    names -- function/state/... names (i.e., the keys of by_name)
    parameters -- parameter names
    stats -- ParamStats object providing parameter-dependency statistics for each name and attribute
    assess -- calculate model quality
    """

    def __init__(
        self,
        by_name,
        parameters,
        arg_count=None,
        function_override=dict(),
        use_corrcoef=False,
    ):
        """
        Create a new AnalyticModel and compute parameter statistics.

        :param by_name: measurements aggregated by (function/state/...) name.
            Layout: dictionary with one key per name ('send', 'TX', ...) or
            one key per name and parameter combination
            (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).

            Parameter values must be ordered corresponding to the lexically sorted parameter names.

            Each element is in turn a dict with the following elements:
            - param: list of parameter values in each measurement (-> list of lists)
            - attributes: list of keys that should be analyzed,
                e.g. ['power', 'duration']
            - for each attribute mentioned in 'attributes': A list with measurements.
            All list except for 'attributes' must have the same length.

            For example:
            parameters = ['foo_count', 'irrelevant']
            by_name = {
                'foo' : [1, 1, 2],
                'duration' : [5, 6, 7],
                'attributes' : ['foo', 'duration'],
                'param' : [[1, 0], [1, 0], [2, 0]]
                # foo_count-^  ^-irrelevant
            }
        :param parameters: List of parameter names
        :param function_override: dict of overrides for automatic parameter function generation.
            If (state or transition name, model attribute) is present in function_override,
            the corresponding text string is the function used for analytic (parameter-aware/fitted)
            modeling of this attribute. It is passed to AnalyticFunction, see
            there for the required format. Note that this happens regardless of
            parameter dependency detection: The provided analytic function will be assigned
            even if it seems like the model attribute is static / parameter-independent.
        :param use_corrcoef: use correlation coefficient instead of stddev comparison to detect whether a model attribute depends on a parameter
        """
        self.cache = dict()
        self.by_name = by_name
        self.by_param = by_name_to_by_param(by_name)
        self.names = sorted(by_name.keys())
        self.parameters = sorted(parameters)
        self.function_override = function_override.copy()
        self._use_corrcoef = use_corrcoef
        self._num_args = arg_count
        if self._num_args is None:
            self._num_args = _num_args_from_by_name(by_name)

        self.stats = ParamStats(
            self.by_name,
            self.by_param,
            self.parameters,
            self._num_args,
            use_corrcoef=use_corrcoef,
        )

    def _get_model_from_dict(self, model_dict, model_function):
        model = {}
        for name, elem in model_dict.items():
            model[name] = {}
            for key in elem["attributes"]:
                try:
                    model[name][key] = model_function(elem[key])
                except RuntimeWarning:
                    logger.warning("Got no data for {} {}".format(name, key))
                except FloatingPointError as fpe:
                    logger.warning("Got no data for {} {}: {}".format(name, key, fpe))
        return model

    def param_index(self, param_name):
        if param_name in self.parameters:
            return self.parameters.index(param_name)
        return len(self.parameters) + int(param_name)

    def param_name(self, param_index):
        if param_index < len(self.parameters):
            return self.parameters[param_index]
        return str(param_index)

    def get_static(self, use_mean=False):
        """
        Get static model function: name, attribute -> model value.

        Uses the median of by_name for modeling.
        """
        getter_function = np.median

        if use_mean:
            getter_function = np.mean

        static_model = self._get_model_from_dict(self.by_name, getter_function)

        def static_model_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_model_getter

    def get_param_lut(self, fallback=False):
        """
        Get parameter-look-up-table model function: name, attribute, parameter values -> model value.

        The function can only give model values for parameter combinations
        present in by_param. By default, it raises KeyError for other values.

        arguments:
        fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)
        lut_model = self._get_model_from_dict(self.by_param, np.median)

        def lut_median_getter(name, key, param, arg=[], **kwargs):
            param.extend(map(soft_cast_int, arg))
            try:
                return lut_model[(name, tuple(param))][key]
            except KeyError:
                if fallback:
                    return static_model[name][key]
                raise

        return lut_median_getter

    def get_fitted(self, safe_functions_enabled=False):
        """
        Get paramete-aware model function and model information function.

        Returns two functions:
        model_function(name, attribute, param=parameter values) -> model value.
        model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
        """
        if "fitted_model_getter" in self.cache and "fitted_info_getter" in self.cache:
            return self.cache["fitted_model_getter"], self.cache["fitted_info_getter"]

        static_model = self._get_model_from_dict(self.by_name, np.median)
        param_model = dict([[name, {}] for name in self.by_name.keys()])
        paramfit = ParallelParamFit(self.by_param)

        for name in self.by_name.keys():
            for attribute in self.by_name[name]["attributes"]:
                for param_index, param in enumerate(self.parameters):
                    if self.stats.depends_on_param(name, attribute, param):
                        paramfit.enqueue(name, attribute, param_index, param, False)
                if arg_support_enabled and name in self._num_args:
                    for arg_index in range(self._num_args[name]):
                        if self.stats.depends_on_arg(name, attribute, arg_index):
                            paramfit.enqueue(
                                name,
                                attribute,
                                len(self.parameters) + arg_index,
                                arg_index,
                                False,
                            )

        paramfit.fit()

        for name in self.by_name.keys():
            num_args = 0
            if name in self._num_args:
                num_args = self._num_args[name]
            for attribute in self.by_name[name]["attributes"]:
                fit_result = paramfit.get_result(name, attribute)

                if (name, attribute) in self.function_override:
                    function_str = self.function_override[(name, attribute)]
                    x = AnalyticFunction(function_str, self.parameters, num_args)
                    x.fit(self.by_param, name, attribute)
                    if x.fit_success:
                        param_model[name][attribute] = {
                            "fit_result": fit_result,
                            "function": x,
                        }
                elif len(fit_result.keys()):
                    x = analytic.function_powerset(
                        fit_result, self.parameters, num_args
                    )
                    x.fit(self.by_param, name, attribute)

                    if x.fit_success:
                        param_model[name][attribute] = {
                            "fit_result": fit_result,
                            "function": x,
                        }

        def model_getter(name, key, **kwargs):
            if "arg" in kwargs and "param" in kwargs:
                kwargs["param"].extend(map(soft_cast_int, kwargs["arg"]))
            if key in param_model[name]:
                param_list = kwargs["param"]
                param_function = param_model[name][key]["function"]
                if param_function.is_predictable(param_list):
                    return param_function.eval(param_list)
            return static_model[name][key]

        def info_getter(name, key):
            if key in param_model[name]:
                return param_model[name][key]
            return None

        self.cache["fitted_model_getter"] = model_getter
        self.cache["fitted_info_getter"] = info_getter

        return model_getter, info_getter

    def assess(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each by_name entry.

        state/transition/... name and parameter values are fed into model_function.
        The by_name entries of this AnalyticModel are used as ground truth and
        compared with the values predicted by model_function.

        For proper model assessments, the data used to generate model_function
        and the data fed into this AnalyticModel instance must be mutually
        exclusive (e.g. by performing cross validation). Otherwise,
        overfitting cannot be detected.
        """
        detailed_results = {}
        for name, elem in sorted(self.by_name.items()):
            detailed_results[name] = {}
            for attribute in elem["attributes"]:
                predicted_data = np.array(
                    list(
                        map(
                            lambda i: model_function(
                                name, attribute, param=elem["param"][i]
                            ),
                            range(len(elem[attribute])),
                        )
                    )
                )
                measures = regression_measures(predicted_data, elem[attribute])
                detailed_results[name][attribute] = measures

        return {"by_name": detailed_results}

    def to_json(self):
        # TODO
        pass


class PTAModel:
    """
    Parameter-aware PTA-based energy model.

    Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.

    The model heavily relies on two internal data structures:
    PTAModel.by_name and PTAModel.by_param.

    These provide measurements aggregated by state/transition name
    and (for by_param) parameter values. Layout:
    dictionary with one key per state/transition ('send', 'TX', ...) or
    one key per state/transition and parameter combination
    (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
    For by_param, parameter values are ordered corresponding to the lexically sorted parameter names.

    Each element is in turn a dict with the following elements:
    - isa: 'state' or 'transition'
    - power: list of mean power measurements in µW
    - duration: list of durations in µs
    - power_std: list of stddev of power per state/transition
    - energy: consumed energy (power*duration) in pJ
    - paramkeys: list of parameter names in each measurement (-> list of lists)
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    additionally, only if isa == 'transition':
    - timeout: list of duration of previous state in µs
    - rel_energy_prev: transition energy relative to previous state mean power in pJ
    - rel_energy_next: transition energy relative to next state mean power in pJ
    """

    def __init__(
        self,
        by_name,
        parameters,
        arg_count,
        traces=[],
        ignore_trace_indexes=[],
        function_override={},
        use_corrcoef=False,
        pta=None,
    ):
        """
        Prepare a new PTA energy model.

        Actual model generation is done on-demand by calling the respective functions.

        arguments:
        by_name -- state/transition measurements aggregated by name, as returned by pta_trace_to_aggregate.
        parameters -- list of parameter names, as returned by pta_trace_to_aggregate
        arg_count -- function arguments, as returned by pta_trace_to_aggregate
        traces -- list of preprocessed DFA traces, as returned by RawData.get_preprocessed_data()
        ignore_trace_indexes -- list of trace indexes. The corresponding traces will be ignored.
        function_override -- dict of overrides for automatic parameter function generation.
            If (state or transition name, model attribute) is present in function_override,
            the corresponding text string is the function used for analytic (parameter-aware/fitted)
            modeling of this attribute. It is passed to AnalyticFunction, see
            there for the required format. Note that this happens regardless of
            parameter dependency detection: The provided analytic function will be assigned
            even if it seems like the model attribute is static / parameter-independent.
        use_corrcoef -- use correlation coefficient instead of stddev comparison
            to detect whether a model attribute depends on a parameter
        pta -- hardware model as `PTA` object
        """
        self.by_name = by_name
        self.by_param = by_name_to_by_param(by_name)
        self._parameter_names = sorted(parameters)
        self._num_args = arg_count
        self._use_corrcoef = use_corrcoef
        self.traces = traces
        self.stats = ParamStats(
            self.by_name,
            self.by_param,
            self._parameter_names,
            self._num_args,
            self._use_corrcoef,
        )
        self.cache = {}
        np.seterr("raise")
        self.function_override = function_override.copy()
        self.pta = pta
        self.ignore_trace_indexes = ignore_trace_indexes
        self._aggregate_to_ndarray(self.by_name)

    def _aggregate_to_ndarray(self, aggregate):
        for elem in aggregate.values():
            for key in elem["attributes"]:
                elem[key] = np.array(elem[key])

    # This heuristic is very similar to the "function is not much better than
    # median" checks in get_fitted. So far, doing it here as well is mostly
    # a performance and not an algorithm quality decision.
    # --df, 2018-04-18
    def depends_on_param(self, state_or_trans, key, param):
        return self.stats.depends_on_param(state_or_trans, key, param)

    # See notes on depends_on_param
    def depends_on_arg(self, state_or_trans, key, param):
        return self.stats.depends_on_arg(state_or_trans, key, param)

    def _get_model_from_dict(self, model_dict, model_function):
        model = {}
        for name, elem in model_dict.items():
            model[name] = {}
            for key in elem["attributes"]:
                try:
                    model[name][key] = model_function(elem[key])
                except RuntimeWarning:
                    logger.warning("Got no data for {} {}".format(name, key))
                except FloatingPointError as fpe:
                    logger.warning("Got no data for {} {}: {}".format(name, key, fpe))
        return model

    def get_static(self, use_mean=False):
        """
        Get static model function: name, attribute -> model value.

        Uses the median of by_name for modeling, unless `use_mean` is set.
        """
        getter_function = np.median

        if use_mean:
            getter_function = np.mean

        static_model = self._get_model_from_dict(self.by_name, getter_function)

        def static_model_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_model_getter

    def get_param_lut(self, fallback=False):
        """
        Get parameter-look-up-table model function: name, attribute, parameter values -> model value.

        The function can only give model values for parameter combinations
        present in by_param. By default, it raises KeyError for other values.

        arguments:
        fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)
        lut_model = self._get_model_from_dict(self.by_param, np.median)

        def lut_median_getter(name, key, param, arg=[], **kwargs):
            param.extend(map(soft_cast_int, arg))
            try:
                return lut_model[(name, tuple(param))][key]
            except KeyError:
                if fallback:
                    return static_model[name][key]
                raise

        return lut_median_getter

    def param_index(self, param_name):
        if param_name in self._parameter_names:
            return self._parameter_names.index(param_name)
        return len(self._parameter_names) + int(param_name)

    def param_name(self, param_index):
        if param_index < len(self._parameter_names):
            return self._parameter_names[param_index]
        return str(param_index)

    def get_fitted(self, safe_functions_enabled=False):
        """
        Get parameter-aware model function and model information function.

        Returns two functions:
        model_function(name, attribute, param=parameter values) -> model value.
        model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
        """
        if "fitted_model_getter" in self.cache and "fitted_info_getter" in self.cache:
            return self.cache["fitted_model_getter"], self.cache["fitted_info_getter"]

        static_model = self._get_model_from_dict(self.by_name, np.median)
        param_model = dict(
            [[state_or_tran, {}] for state_or_tran in self.by_name.keys()]
        )
        paramfit = ParallelParamFit(self.by_param)
        for state_or_tran in self.by_name.keys():
            for model_attribute in self.by_name[state_or_tran]["attributes"]:
                fit_results = {}
                for parameter_index, parameter_name in enumerate(self._parameter_names):
                    if self.depends_on_param(
                        state_or_tran, model_attribute, parameter_name
                    ):
                        paramfit.enqueue(
                            state_or_tran,
                            model_attribute,
                            parameter_index,
                            parameter_name,
                            safe_functions_enabled,
                        )
                if (
                    arg_support_enabled
                    and self.by_name[state_or_tran]["isa"] == "transition"
                ):
                    for arg_index in range(self._num_args[state_or_tran]):
                        if self.depends_on_arg(
                            state_or_tran, model_attribute, arg_index
                        ):
                            paramfit.enqueue(
                                state_or_tran,
                                model_attribute,
                                len(self._parameter_names) + arg_index,
                                arg_index,
                                safe_functions_enabled,
                            )
        paramfit.fit()

        for state_or_tran in self.by_name.keys():
            num_args = 0
            if (
                arg_support_enabled
                and self.by_name[state_or_tran]["isa"] == "transition"
            ):
                num_args = self._num_args[state_or_tran]
            for model_attribute in self.by_name[state_or_tran]["attributes"]:
                fit_results = paramfit.get_result(state_or_tran, model_attribute)

                if (state_or_tran, model_attribute) in self.function_override:
                    function_str = self.function_override[
                        (state_or_tran, model_attribute)
                    ]
                    x = AnalyticFunction(function_str, self._parameter_names, num_args)
                    x.fit(self.by_param, state_or_tran, model_attribute)
                    if x.fit_success:
                        param_model[state_or_tran][model_attribute] = {
                            "fit_result": fit_results,
                            "function": x,
                        }
                elif len(fit_results.keys()):
                    x = analytic.function_powerset(
                        fit_results, self._parameter_names, num_args
                    )
                    x.fit(self.by_param, state_or_tran, model_attribute)
                    if x.fit_success:
                        param_model[state_or_tran][model_attribute] = {
                            "fit_result": fit_results,
                            "function": x,
                        }

        def model_getter(name, key, **kwargs):
            if "arg" in kwargs and "param" in kwargs:
                kwargs["param"].extend(map(soft_cast_int, kwargs["arg"]))
            if key in param_model[name]:
                param_list = kwargs["param"]
                param_function = param_model[name][key]["function"]
                if param_function.is_predictable(param_list):
                    return param_function.eval(param_list)
            return static_model[name][key]

        def info_getter(name, key):
            if key in param_model[name]:
                return param_model[name][key]
            return None

        self.cache["fitted_model_getter"] = model_getter
        self.cache["fitted_info_getter"] = info_getter

        return model_getter, info_getter

    def to_json(self):
        static_model = self.get_static()
        static_quality = self.assess(static_model)
        param_model, param_info = self.get_fitted()
        analytic_quality = self.assess(param_model)
        pta = self.pta
        if pta is None:
            pta = PTA(self.states(), parameters=self._parameter_names)
        pta.update(
            static_model,
            param_info,
            static_error=static_quality["by_name"],
            analytic_error=analytic_quality["by_name"],
        )
        return pta.to_json()

    def states(self):
        """Return sorted list of state names."""
        return sorted(
            list(
                filter(lambda k: self.by_name[k]["isa"] == "state", self.by_name.keys())
            )
        )

    def transitions(self):
        """Return sorted list of transition names."""
        return sorted(
            list(
                filter(
                    lambda k: self.by_name[k]["isa"] == "transition",
                    self.by_name.keys(),
                )
            )
        )

    def states_and_transitions(self):
        """Return list of states and transition names."""
        ret = self.states()
        ret.extend(self.transitions())
        return ret

    def parameters(self):
        return self._parameter_names

    def attributes(self, state_or_trans):
        return self.by_name[state_or_trans]["attributes"]

    def assess(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each by_name entry.

        state/transition/... name and parameter values are fed into model_function.
        The by_name entries of this PTAModel are used as ground truth and
        compared with the values predicted by model_function.

        For proper model assessments, the data used to generate model_function
        and the data fed into this AnalyticModel instance must be mutually
        exclusive (e.g. by performing cross validation). Otherwise,
        overfitting cannot be detected.
        """
        detailed_results = {}
        for name, elem in sorted(self.by_name.items()):
            detailed_results[name] = {}
            for key in elem["attributes"]:
                predicted_data = np.array(
                    list(
                        map(
                            lambda i: model_function(name, key, param=elem["param"][i]),
                            range(len(elem[key])),
                        )
                    )
                )
                measures = regression_measures(predicted_data, elem[key])
                detailed_results[name][key] = measures

        return {"by_name": detailed_results}

    def assess_states(
        self, model_function, model_attribute="power", distribution: dict = None
    ):
        """
        Calculate overall model error assuming equal distribution of states
        """
        # TODO calculate mean power draw for distribution and use it to
        # calculate relative error from MAE combination
        model_quality = self.assess(model_function)
        num_states = len(self.states())
        if distribution is None:
            distribution = dict(map(lambda x: [x, 1 / num_states], self.states()))

        if not np.isclose(sum(distribution.values()), 1):
            raise ValueError(
                "distribution must be a probability distribution with sum 1"
            )

        # total_value = None
        # try:
        #     total_value = sum(map(lambda x: model_function(x, model_attribute) * distribution[x], self.states()))
        # except KeyError:
        #     pass

        total_error = np.sqrt(
            sum(
                map(
                    lambda x: np.square(
                        model_quality["by_name"][x][model_attribute]["mae"]
                        * distribution[x]
                    ),
                    self.states(),
                )
            )
        )
        return total_error

    def assess_on_traces(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each trace known to this PTAModel instance.

        :returns: dict of `duration_by_trace`, `energy_by_trace`, `timeout_by_trace`, `rel_energy_by_trace` and `state_energy_by_trace`.
            Each entry holds regression measures for the corresponding measure. Note that the determined model quality heavily depends on the
            traces: small-ish absolute errors in states which frequently occur may have more effect than large absolute errors in rarely occuring states
        """
        model_energy_list = []
        real_energy_list = []
        model_rel_energy_list = []
        model_state_energy_list = []
        model_duration_list = []
        real_duration_list = []
        model_timeout_list = []
        real_timeout_list = []

        for trace in self.traces:
            if trace["id"] not in self.ignore_trace_indexes:
                for rep_id in range(len(trace["trace"][0]["offline"])):
                    model_energy = 0.0
                    real_energy = 0.0
                    model_rel_energy = 0.0
                    model_state_energy = 0.0
                    model_duration = 0.0
                    real_duration = 0.0
                    model_timeout = 0.0
                    real_timeout = 0.0
                    for i, trace_part in enumerate(trace["trace"]):
                        name = trace_part["name"]
                        prev_name = trace["trace"][i - 1]["name"]
                        isa = trace_part["isa"]
                        if name != "UNINITIALIZED":
                            try:
                                param = trace_part["offline_aggregates"]["param"][
                                    rep_id
                                ]
                                prev_param = trace["trace"][i - 1][
                                    "offline_aggregates"
                                ]["param"][rep_id]
                                power = trace_part["offline"][rep_id]["uW_mean"]
                                duration = trace_part["offline"][rep_id]["us"]
                                prev_duration = trace["trace"][i - 1]["offline"][
                                    rep_id
                                ]["us"]
                                real_energy += power * duration
                                if isa == "state":
                                    model_energy += (
                                        model_function(name, "power", param=param)
                                        * duration
                                    )
                                else:
                                    model_energy += model_function(
                                        name, "energy", param=param
                                    )
                                    # If i == 1, the previous state was UNINITIALIZED, for which we do not have model data
                                    if i == 1:
                                        model_rel_energy += model_function(
                                            name, "energy", param=param
                                        )
                                    else:
                                        model_rel_energy += model_function(
                                            prev_name, "power", param=prev_param
                                        ) * (prev_duration + duration)
                                        model_state_energy += model_function(
                                            prev_name, "power", param=prev_param
                                        ) * (prev_duration + duration)
                                    model_rel_energy += model_function(
                                        name, "rel_energy_prev", param=param
                                    )
                                    real_duration += duration
                                    model_duration += model_function(
                                        name, "duration", param=param
                                    )
                                    if (
                                        "plan" in trace_part
                                        and trace_part["plan"]["level"] == "epilogue"
                                    ):
                                        real_timeout += trace_part["offline"][rep_id][
                                            "timeout"
                                        ]
                                        model_timeout += model_function(
                                            name, "timeout", param=param
                                        )
                            except KeyError:
                                # if states/transitions have been removed via --filter-param, this is harmless
                                pass
                    real_energy_list.append(real_energy)
                    model_energy_list.append(model_energy)
                    model_rel_energy_list.append(model_rel_energy)
                    model_state_energy_list.append(model_state_energy)
                    real_duration_list.append(real_duration)
                    model_duration_list.append(model_duration)
                    real_timeout_list.append(real_timeout)
                    model_timeout_list.append(model_timeout)

        return {
            "duration_by_trace": regression_measures(
                np.array(model_duration_list), np.array(real_duration_list)
            ),
            "energy_by_trace": regression_measures(
                np.array(model_energy_list), np.array(real_energy_list)
            ),
            "timeout_by_trace": regression_measures(
                np.array(model_timeout_list), np.array(real_timeout_list)
            ),
            "rel_energy_by_trace": regression_measures(
                np.array(model_rel_energy_list), np.array(real_energy_list)
            ),
            "state_energy_by_trace": regression_measures(
                np.array(model_state_energy_list), np.array(real_energy_list)
            ),
        }


class KConfigModel:
    class Leaf:
        def __init__(self, value, stddev):
            self.value = value
            self.stddev = stddev

        def model(self, kconf):
            return self.value

        def __repr__(self):
            return f"<Leaf({self.value}, {self.stddev})>"

        def to_json(self):
            return {"value": self.value, "stddev": self.stddev}

    class Node:
        def __init__(self, symbol):
            self.symbol = symbol
            self.child_n = None
            self.child_y = None

        def set_child_n(self, child_node):
            self.child_n = child_node

        def set_child_y(self, child_node):
            self.child_y = child_node

        def model(self, kconf):
            if kconf.syms[self.symbol].tri_value == 0 and self.child_n:
                return self.child_n.model(kconf)
            if kconf.syms[self.symbol].tri_value == 2 and self.child_y:
                return self.child_y.model(kconf)
            return None

        def __repr__(self):
            return f"<Node(n={self.child_n}, y={self.child_y})>"

        def to_json(self):
            ret = {"symbol": self.symbol}
            if self.child_n:
                ret["n"] = self.child_n.to_json()
            else:
                ret["n"] = None
            if self.child_y:
                ret["y"] = self.child_y.to_json()
            else:
                ret["y"] = None
            return ret

    def __init__(self, kconfig_benchmark):
        self.data = kconfig_benchmark.data
        self.symbols = kconfig_benchmark.symbols
        model = self.get_min(self.symbols, self.data, 0)

        output = {"model": model.to_json(), "symbols": self.symbols}
        print(output)

        # with open("kconfigmodel.json", "w") as f:
        #    json.dump(output, f)

    def get_min(self, this_symbols, this_data, level):

        rom_sizes = list(map(lambda x: x[1]["total"]["ROM"], this_data))

        if np.std(rom_sizes) < 100 or len(this_symbols) == 0:
            return self.Leaf(np.mean(rom_sizes), np.std(rom_sizes))

        mean_stds = list()
        for i, param in enumerate(this_symbols):
            enabled = list(filter(lambda vrr: vrr[0][i] == True, this_data))
            disabled = list(filter(lambda vrr: vrr[0][i] == False, this_data))

            enabled_std_rom = np.std(list(map(lambda x: x[1]["total"]["ROM"], enabled)))
            disabled_std_rom = np.std(
                list(map(lambda x: x[1]["total"]["ROM"], disabled))
            )
            children = [enabled_std_rom, disabled_std_rom]

            if np.any(np.isnan(children)):
                mean_stds.append(np.inf)
            else:
                mean_stds.append(np.mean(children))

        symbol_index = np.argmin(mean_stds)
        symbol = this_symbols[symbol_index]
        enabled = list(filter(lambda vrr: vrr[0][symbol_index] == True, this_data))
        disabled = list(filter(lambda vrr: vrr[0][symbol_index] == False, this_data))

        node = self.Node(symbol)

        new_symbols = this_symbols[:symbol_index] + this_symbols[symbol_index + 1 :]
        enabled = list(
            map(
                lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], x[1]),
                enabled,
            )
        )
        disabled = list(
            map(
                lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], x[1]),
                disabled,
            )
        )
        print(
            f"Level {level} split on {symbol} has {len(enabled)} children when enabled and {len(disabled)} children when disabled"
        )
        if len(enabled):
            node.set_child_y(self.get_min(new_symbols, enabled, level + 1))
        if len(disabled):
            node.set_child_n(self.get_min(new_symbols, disabled, level + 1))

        return node