summaryrefslogtreecommitdiff
path: root/lib/pelt.py
blob: 500ae13f0a5cc0e81ed2e0f3a5ba08752cd47c5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python3

import logging
import numpy as np
import os
from multiprocessing import Pool

logger = logging.getLogger(__name__)


def PELT_get_changepoints(algo, penalty):
    res = (penalty, algo.predict(pen=penalty))
    return res


# calculates the raw_states for a measurement. num_measurement is used to identify the return value
# penalty, model and jump are directly passed to pelt
def PELT_get_raw_states(num_measurement, algo, penalty):
    changepoints = algo.predict(pen=penalty)
    substates = list()
    start_index = 0
    end_index = 0
    # calc metrics for all states
    for changepoint in changepoints:
        # start_index of state is end_index of previous one
        # (Transitions are instantaneous)
        start_index = end_index
        end_index = changepoint - 1
        substate = (start_index, end_index)
        substates.append(substate)

    return num_measurement, substates


class PELT:
    def __init__(self, **kwargs):
        self.algo = "pelt"
        self.model = "l1"
        self.jump = 1
        self.min_dist = 10
        self.num_samples = None
        self.refinement_threshold = 200e-6  # 200 µW
        self.range_min = 0
        self.range_max = 100
        self.stretch = 1
        self.with_multiprocessing = True
        self.__dict__.update(kwargs)

        if os.getenv("DFATOOL_PELT_MODEL"):
            # https://centre-borelli.github.io/ruptures-docs/user-guide/costs/costl1/
            self.model = os.getenv("DFATOOL_PELT_MODEL")
        if os.getenv("DFATOOL_PELT_JUMP"):
            self.jump = int(os.getenv("DFATOOL_PELT_JUMP"))
        if os.getenv("DFATOOL_PELT_MIN_DIST"):
            self.min_dist = int(os.getenv("DFATOOL_PELT_MIN_DIST"))

    # signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry)
    def needs_refinement(self, signals):
        count = 0
        for signal in signals:
            # test
            p1, median, p99 = np.percentile(signal[5:-5], (1, 50, 99))

            if median - p1 > self.refinement_threshold:
                count += 1
            elif p99 - median > self.refinement_threshold:
                count += 1
        refinement_ratio = count / len(signals)
        return refinement_ratio > 0.3

    def norm_signal(self, signal, scaler=25):
        max_val = max(np.abs(signal))
        normed_signal = np.zeros(shape=len(signal))
        for i, signal_i in enumerate(signal):
            normed_signal[i] = signal_i / max_val
            normed_signal[i] = normed_signal[i] * scaler
        return normed_signal

    def get_penalty_and_changepoints(self, signal, penalty=None, num_changepoints=None):
        # imported here as ruptures is only used for changepoint detection.
        # This way, dfatool can be used without having ruptures installed as
        # long as --pelt isn't active.
        import ruptures

        if self.stretch != 1:
            signal = np.interp(
                np.linspace(0, len(signal) - 1, (len(signal) - 1) * self.stretch + 1),
                np.arange(len(signal)),
                signal,
            )

        if self.num_samples is not None and len(signal) > self.num_samples:
            self.jump = len(signal) // int(self.num_samples)
        else:
            self.jump = 1

        if self.algo == "dynp":
            # https://centre-borelli.github.io/ruptures-docs/user-guide/detection/dynp/
            algo = ruptures.Dynp(
                model=self.model, jump=self.jump, min_size=self.min_dist
            )
        else:
            # https://centre-borelli.github.io/ruptures-docs/user-guide/detection/pelt/
            algo = ruptures.Pelt(
                model=self.model, jump=self.jump, min_size=self.min_dist
            )
        algo = algo.fit(self.norm_signal(signal))

        if penalty is not None:
            changepoints = algo.predict(pen=penalty)
            if len(changepoints) and changepoints[-1] == len(signal):
                changepoints.pop()
            if len(changepoints) and changepoints[0] == 0:
                changepoints.pop(0)
            if self.stretch != 1:
                changepoints = np.array(
                    np.around(np.array(changepoints) / self.stretch), dtype=np.int
                )
            return penalty, changepoints

        if self.algo == "dynp" and num_changepoints is not None:
            changepoints = algo.predict(n_bkps=num_changepoints)
            if len(changepoints) and changepoints[-1] == len(signal):
                changepoints.pop()
            if len(changepoints) and changepoints[0] == 0:
                changepoints.pop(0)
            if self.stretch != 1:
                changepoints = np.array(
                    np.around(np.array(changepoints) / self.stretch), dtype=np.int
                )
            return None, changepoints

        queue = list()
        for i in range(0, 100):
            queue.append((algo, i))
        if self.with_multiprocessing:
            with Pool() as pool:
                changepoints = pool.starmap(PELT_get_changepoints, queue)
        else:
            changepoints = map(lambda x: PELT_get_changepoints(*x), queue)
        changepoints_by_penalty = dict()
        for res in changepoints:
            if len(res[1]) > 0 and res[1][-1] == len(signal):
                res[1].pop()
            if self.stretch != 1:
                res[1] = np.array(
                    np.around(np.array(res[1]) / self.stretch), dtype=np.int
                )
            changepoints_by_penalty[res[0]] = res[1]
        changepoint_counts = list()
        for i in range(0, 100):
            changepoint_counts.append(len(changepoints_by_penalty[i]))

        start_index = -1
        end_index = -1
        longest_start = -1
        longest_end = -1
        prev_val = -1
        for i, num_changepoints in enumerate(changepoint_counts):
            if num_changepoints != prev_val:
                end_index = i - 1
                if end_index - start_index > longest_end - longest_start:
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            if i == len(changepoint_counts) - 1:
                end_index = i
                if end_index - start_index > longest_end - longest_start:
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            prev_val = num_changepoints
        middle_of_plateau = longest_start + (longest_start - longest_start) // 2
        changepoints = np.array(changepoints_by_penalty[middle_of_plateau])
        return middle_of_plateau, changepoints

    def get_changepoints(self, signal, **kwargs):
        _, changepoints = self.get_penalty_and_changepoints(signal, **kwargs)
        return changepoints

    def get_penalty(self, signal, **kwargs):
        penalty, _ = self.get_penalty_and_changepoints(signal, **kwargs)
        return penalty

    def calc_raw_states(self, timestamps, signals, penalty, opt_model=None):
        """
        Calculate substates for signals (assumed to be long to a single parameter configuration).

        :returns: List of substates with duration and mean power: [(substate 1 duration, substate 1 power), ...]
        """

        # imported here as ruptures is only used for changepoint detection.
        # This way, dfatool can be used without having ruptures installed as
        # long as --pelt isn't active.
        import ruptures

        substate_data = list()

        raw_states_calc_args = list()
        for num_measurement, measurement in enumerate(signals):
            normed_signal = self.norm_signal(measurement)
            algo = ruptures.Pelt(
                model=self.model, jump=self.jump, min_size=self.min_dist
            ).fit(normed_signal)
            raw_states_calc_args.append((num_measurement, algo, penalty))

        raw_states_list = [None] * len(signals)
        with Pool() as pool:
            raw_states_res = pool.starmap(PELT_get_raw_states, raw_states_calc_args)

        substate_counts = list(map(lambda x: len(x[1]), raw_states_res))
        expected_substate_count = np.argmax(np.bincount(substate_counts))
        usable_measurements = list(
            filter(lambda x: len(x[1]) == expected_substate_count, raw_states_res)
        )
        logger.debug(
            f"    There are {expected_substate_count} substates (std = {np.std(substate_counts)}, {len(usable_measurements)}/{len(raw_states_res)} results are usable)"
        )

        for i in range(expected_substate_count):
            substate_data.append(
                {"duration": list(), "power": list(), "power_std": list()}
            )

        for num_measurement, substates in usable_measurements:
            for i, substate in enumerate(substates):
                power_trace = signals[num_measurement][substate[0] : substate[1]]
                mean_power = np.mean(power_trace)
                std_power = np.std(power_trace)
                duration = (
                    timestamps[num_measurement][substate[1]]
                    - timestamps[num_measurement][substate[0]]
                )
                substate_data[i]["duration"].append(duration)
                substate_data[i]["power"].append(mean_power)
                substate_data[i]["power_std"].append(std_power)

        return substate_counts, substate_data