summaryrefslogtreecommitdiff
path: root/lib/plotter.py
blob: 8a28f4c0496b71eaa68d39b6391597328e396ec7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/env python3

import itertools
import numpy as np
import matplotlib.pyplot as plt
import re
from matplotlib.patches import Polygon

def flatten(somelist):
    """
    Flatten a list.

    Example: flatten([[1, 2], [3], [4, 5]]) -> [1, 2, 3, 4, 5]
    """
    return [item for sublist in somelist for item in sublist]

def is_state(aggregate, name):
    """Return true if name is a state and not UNINITIALIZED."""
    return aggregate[name]['isa'] == 'state' and name != 'UNINITIALIZED'

def plot_states(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
    data = [aggregate[key]['means'] for key in keys]
    mdata = [int(model['state'][key]['power']['static']) for key in keys]
    boxplot(keys, data, 'Zustand', 'µW', modeldata = mdata)

def plot_transitions(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
    data = [aggregate[key]['rel_energies'] for key in keys]
    mdata = [int(model['transition'][key]['rel_energy']['static']) for key in keys]
    boxplot(keys, data, 'Transition', 'pJ (rel)', modeldata = mdata)
    data = [aggregate[key]['energies'] for key in keys]
    mdata = [int(model['transition'][key]['energy']['static']) for key in keys]
    boxplot(keys, data, 'Transition', 'pJ', modeldata = mdata)

def plot_states_duration(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
    data = [aggregate[key]['durations'] for key in keys]
    boxplot(keys, data, 'Zustand', 'µs')

def plot_transitions_duration(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
    data = [aggregate[key]['durations'] for key in keys]
    boxplot(keys, data, 'Transition', 'µs')

def plot_transitions_timeout(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
    data = [aggregate[key]['timeouts'] for key in keys]
    boxplot(keys, data, 'Timeout', 'µs')

def plot_states_clips(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
    data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys]
    boxplot(keys, data, 'Zustand', '% Clipping')

def plot_transitions_clips(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition']
    data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys]
    boxplot(keys, data, 'Transition', '% Clipping')

def plot_substate_thresholds(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)]
    data = [aggregate[key]['sub_thresholds'] for key in keys]
    boxplot(keys, data, 'Zustand', 'substate threshold (mW/dmW)')

def plot_histogram(data):
    n, bins, patches = plt.hist(data, 1000, normed=1, facecolor='green', alpha=0.75)
    plt.show()

def plot_states_param(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED']
    data = [aggregate[key]['means'] for key in keys]
    mdata = [int(model['state'][key[0]]['power']['static']) for key in keys]
    boxplot(keys, data, 'Transition', 'µW', modeldata = mdata)

def plot_attribute(aggregate, attribute, attribute_unit = '', key_filter = lambda x: True):
    """
    Boxplot measurements of a single attribute according to the partitioning provided by aggregate.

    Plots aggregate[*][attribute] with one column per aggregate key.

    arguments:
    aggregate -- measurements. aggregate[*][attribute] must be list of numbers
    attribute -- attribute to plot, e.g. 'power' or 'duration'
    attribute_init -- attribute unit for display in X axis legend
    key_filter -- if set: Only plot keys where key_filter(key) returns True
    """
    keys = list(filter(key_filter, sorted(aggregate.keys())))
    data = [aggregate[key][attribute] for key in keys]
    boxplot(keys, data, attribute, attribute_unit)

def plot_substate_thresholds_p(model, aggregate):
    keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED']
    data = [aggregate[key]['sub_thresholds'] for key in keys]
    boxplot(keys, data, 'Zustand', '% Clipping')

def plot_y(Y, **kwargs):
    plot_xy(np.arange(len(Y)), Y, **kwargs)

def plot_xy(X, Y, xlabel = None, ylabel = None, title = None, output = None):
    fig, ax1 = plt.subplots(figsize=(10,6))
    if title != None:
        fig.canvas.set_window_title(title)
    if xlabel != None:
        ax1.set_xlabel(xlabel)
    if ylabel != None:
        ax1.set_ylabel(ylabel)
    plt.subplots_adjust(left = 0.1, bottom = 0.1, right = 0.99, top = 0.99)
    plt.plot(X, Y, "bo", markersize=2)
    if output:
        plt.savefig(output)
        with open('{}.txt'.format(output), 'w') as f:
            print('X Y', file=f)
            for i in range(len(X)):
                print('{} {}'.format(X[i], Y[i]), file=f)
    else:
        plt.show()

def _param_slice_eq(a, b, index):
    return (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]

def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabel = None, title = None, extra_function = None, output = None):
    fig, ax1 = plt.subplots(figsize=(10,6))
    if title != None:
        fig.canvas.set_window_title(title)
    if xlabel != None:
        ax1.set_xlabel(xlabel)
    if ylabel != None:
        ax1.set_ylabel(ylabel)
    plt.subplots_adjust(left = 0.1, bottom = 0.1, right = 0.99, top = 0.99)

    param_name = model.param_name(param_idx)

    function_filename = 'plot_param_{}_{}_{}.txt'.format(state_or_trans, attribute, param_name)
    data_filename_base = 'measurements_{}_{}_{}'.format(state_or_trans, attribute, param_name)

    param_model, param_info = model.get_fitted()

    by_other_param = {}

    XX = []

    legend_sanitizer = re.compile(r'[^0-9a-zA-Z]+')

    for k, v in model.by_param.items():
        if k[0] == state_or_trans:
            other_param_key = (*k[1][:param_idx], *k[1][param_idx+1:])
            if not other_param_key in by_other_param:
                by_other_param[other_param_key] = {'X': [], 'Y': []}
            by_other_param[other_param_key]['X'].extend([float(k[1][param_idx])] * len(v[attribute]))
            by_other_param[other_param_key]['Y'].extend(v[attribute])
            XX.extend(by_other_param[other_param_key]['X'])

    XX = np.array(XX)
    x_range = int((XX.max() - XX.min()) * 10)
    xsp = np.linspace(XX.min(), XX.max(), x_range)
    YY = [xsp]
    YY_legend = [param_name]
    YY2 = []
    YY2_legend = []

    cm = plt.get_cmap('brg', len(by_other_param))
    for i, k in sorted(enumerate(by_other_param), key = lambda x: x[1]):
        v = by_other_param[k]
        v['X'] = np.array(v['X'])
        v['Y'] = np.array(v['Y'])
        plt.plot(v['X'], v['Y'], "ro", color=cm(i), markersize=3)
        YY2_legend.append(legend_sanitizer.sub('_', 'X_{}'.format(k)))
        YY2.append(v['X'])
        YY2_legend.append(legend_sanitizer.sub('_', 'Y_{}'.format(k)))
        YY2.append(v['Y'])

        sanitized_k = legend_sanitizer.sub('_', str(k))
        with open('{}_{}.txt'.format(data_filename_base, sanitized_k), 'w') as f:
            print('X Y', file=f)
            for i in range(len(v['X'])):
                print('{} {}'.format(v['X'][i], v['Y'][i]), file=f)

        #x_range = int((v['X'].max() - v['X'].min()) * 10)
        #xsp = np.linspace(v['X'].min(), v['X'].max(), x_range)
        if param_model:
            ysp = []
            for x in xsp:
                xarg = [*k[:param_idx], x, *k[param_idx:]]
                ysp.append(param_model(state_or_trans, attribute, param = xarg))
            plt.plot(xsp, ysp, "r-", color=cm(i), linewidth=0.5)
            YY.append(ysp)
            YY_legend.append(legend_sanitizer.sub('_', 'regr_{}'.format(k)))
        if extra_function != None:
            ysp = []
            with np.errstate(divide='ignore', invalid='ignore'):
                for x in xsp:
                    xarg = [*k[:param_idx], x, *k[param_idx:]]
                    ysp.append(extra_function(*xarg))
            plt.plot(xsp, ysp, "r--", color=cm(i), linewidth=1, dashes=(3, 3))
            YY.append(ysp)
            YY_legend.append(legend_sanitizer.sub('_', 'symb_{}'.format(k)))

    with open(function_filename, 'w') as f:
        print(' '.join(YY_legend), file=f)
        for elem in np.array(YY).T:
            print(' '.join(map(str, elem)), file=f)

    print(data_filename_base, function_filename)
    if output:
        plt.savefig(output)
    else:
        plt.show()


def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X, Y, xaxis=None, yaxis=None):
    fig, ax1 = plt.subplots(figsize=(10,6))
    fig.canvas.set_window_title("fit %s" % (function))
    plt.subplots_adjust(left=0.14, right=0.99, top=0.99, bottom=0.14)

    x_range = X[index].max() - X[index].min() + 1

    if x_range > 100 and x_range < 500:
        xsp = np.linspace(X[index].min(), X[index].max(), x_range)
    else:
        xsp = np.linspace(X[index].min(), X[index].max(), 100)
        x_range = 100

    if xaxis != None:
        ax1.set_xlabel(xaxis)
    else:
        ax1.set_xlabel(parameters[index])
    if yaxis != None:
        ax1.set_ylabel(yaxis)
    else:
        ax1.set_ylabel('%s %s' % (name, datatype))

    otherparams = list(set(itertools.product(*X[:index], *X[index+1:])))
    cm = plt.get_cmap('brg', len(otherparams))
    for i in range(len(otherparams)):
        elem = otherparams[i]
        color = cm(i)

        tt = np.full((len(X[index])), True, dtype=bool)
        for k in range(len(parameters)):
            if k < index:
                tt &= X[k] == elem[k]
            elif k > index:
                tt &= X[k] == elem[k-1]

        plt.plot(X[index][tt], Y[tt], "rx", color=color)

        xarg = [np.array([x] * x_range) for x in elem[:index]]
        xarg.append(xsp)
        xarg.extend([np.array([x] * x_range) for x in elem[index:]])
        plt.plot(xsp, fitfunc(funp, xarg), "r-", color=color)
    plt.show()


def boxplot(ticks, measurements, xlabel = '', ylabel = '', modeldata = None):
    fig, ax1 = plt.subplots(figsize=(10,6))
    fig.canvas.set_window_title('DriverEval')
    plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1)

    bp = plt.boxplot(measurements, notch=0, sym='+', vert=1, whis=1.5)
    plt.setp(bp['boxes'], color='black')
    plt.setp(bp['whiskers'], color='black')
    plt.setp(bp['fliers'], color='red', marker='+')

    ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
                alpha=0.5)

    ax1.set_axisbelow(True)
    #ax1.set_title('DriverEval')
    ax1.set_xlabel(xlabel)
    ax1.set_ylabel(ylabel)

    numBoxes = len(measurements)

    xtickNames = plt.setp(ax1, xticklabels=ticks)
    plt.setp(xtickNames, rotation=0, fontsize=10)

    boxColors = ['darkkhaki', 'royalblue']
    medians = list(range(numBoxes))
    for i in range(numBoxes):
        box = bp['boxes'][i]
        boxX = []
        boxY = []
        for j in range(5):
            boxX.append(box.get_xdata()[j])
            boxY.append(box.get_ydata()[j])
        boxCoords = list(zip(boxX, boxY))
        # Alternate between Dark Khaki and Royal Blue
        k = i % 2
        boxPolygon = Polygon(boxCoords, facecolor=boxColors[k])
        #ax1.add_patch(boxPolygon)
        # Now draw the median lines back over what we just filled in
        med = bp['medians'][i]
        medianX = []
        medianY = []
        for j in range(2):
            medianX.append(med.get_xdata()[j])
            medianY.append(med.get_ydata()[j])
            plt.plot(medianX, medianY, 'k')
            medians[i] = medianY[0]
        # Finally, overplot the sample averages, with horizontal alignment
        # in the center of each box
        plt.plot([np.average(med.get_xdata())], [np.average(measurements[i])],
                color='w', marker='*', markeredgecolor='k')
        if modeldata:
            plt.plot([np.average(med.get_xdata())], [modeldata[i]],
                color='w', marker='o', markeredgecolor='k')

    pos = np.arange(numBoxes) + 1
    upperLabels = [str(np.round(s, 2)) for s in medians]
    weights = ['bold', 'semibold']
    for tick, label in zip(range(numBoxes), ax1.get_xticklabels()):
        k = tick % 2
        y0, y1 = ax1.get_ylim()
        textpos = y0 + (y1 - y0)*0.97
        ypos = ax1.get_ylim()[0]
        ax1.text(pos[tick], textpos, upperLabels[tick],
                horizontalalignment='center', size='small',
                color='royalblue')

    plt.show()