#!/usr/bin/env python3 # vim:tabstop=4:softtabstop=4:shiftwidth=4:textwidth=160:smarttab:expandtab """dlog-viewer - View and Convert Keysight .dlog Files DESCRIPTION dlog-viewer loads voltage, current, and/or power measurements from .dlog files produced by devices such as the Keysight N6705B DC Power Analyzer. Measurements can be exported to CSV or plotted on-screen. This program is not affiliated with Keysight and has not been thoroughly tested yet. Use at your own risk. OPTIONS """ import argparse import csv import matplotlib.pyplot as plt import numpy as np import os import struct import sys import xml.etree.ElementTree as ET def running_mean(x: np.ndarray, N: int) -> np.ndarray: """ Compute `N` elements wide running average over `x`. :param x: 1-Dimensional NumPy array :param N: how many items to average. Should be even for optimal results. """ # to ensure that output.shape == input.shape, we need to insert data # at the boundaries boundary_array = np.insert(x, 0, np.full((N // 2), x[0])) boundary_array = np.append(boundary_array, np.full((N // 2 + N % 2 - 1), x[-1])) return np.convolve(boundary_array, np.ones((N,)) / N, mode="valid") class DLogChannel: def __init__(self, desc_tuple): self.slot = desc_tuple[0] self.smu = desc_tuple[1] self.unit = desc_tuple[2] self.data = None def __repr__(self): return f"""""" class DLog: def __init__(self, filename): self.load_dlog(filename) def load_dlog(self, filename): lines = [] line = "" with open(filename, "rb") as f: if ".xz" in filename: import lzma f = lzma.open(f) while line != "\n": line = f.readline().decode() lines.append(line) xml_header = "".join(lines) raw_header = f.read(8) data_offset = f.tell() raw_data = f.read() xml_header = xml_header.replace("1ua>", "X1ua>") xml_header = xml_header.replace("2ua>", "X2ua>") dlog = ET.fromstring(xml_header) channels = [] for channel in dlog.findall("channel"): channel_id = int(channel.get("id")) sense_curr = channel.find("sense_curr").text sense_volt = channel.find("sense_volt").text model = channel.find("ident").find("model").text if sense_volt == "1": channels.append((channel_id, model, "V")) if sense_curr == "1": channels.append((channel_id, model, "A")) num_channels = len(channels) self.channels = list(map(DLogChannel, channels)) self.interval = float(dlog.find("frame").find("tint").text) self.planned_duration = int(dlog.find("frame").find("time").text) self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels)) self.timestamps = np.linspace( 0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels)) ) self.data = np.ndarray( shape=(num_channels, int(len(raw_data) / (4 * num_channels))), dtype=np.float32, ) iterator = struct.iter_unpack(">f", raw_data) channel_offset = 0 measurement_offset = 0 for value in iterator: self.data[channel_offset, measurement_offset] = value[0] if channel_offset + 1 == num_channels: channel_offset = 0 measurement_offset += 1 else: channel_offset += 1 # An SMU has four slots self.slots = [dict(), dict(), dict(), dict()] for i, channel in enumerate(self.channels): channel.data = self.data[i] self.slots[channel.slot - 1][channel.unit] = channel def slot_has_data(self, slot): return len(self.slots[slot - 1]) > 0 def slot_has_power(self, slot): slot_data = self.slots[slot - 1] if "W" in slot_data: return True if "V" in slot_data and "A" in slot_data: return True return False def observed_duration_equals_expectation(self): return int(self.observed_duration) == self.planned_duration def all_data_slots_have_power(self): for slot in range(4): if self.slot_has_data(slot) and not self.slot_has_power(slot): return False return True def print_stats(dlog): if dlog.observed_duration_equals_expectation(): print( "Measurement duration: {:d} seconds at {:f} µs per sample".format( dlog.planned_duration, dlog.interval * 1000000 ) ) else: print( "Measurement duration: {:f} of {:d} seconds at {:f} µs per sample".format( dlog.observed_duration, dlog.planned_duration, dlog.interval * 1000000 ) ) for channel in dlog.channels: min_data = np.min(channel.data) max_data = np.max(channel.data) mean_data = np.mean(channel.data) if channel.unit == "V": precision = 3 else: precision = 6 print(f"Slot {channel.slot} ({channel.smu}):") print(f" Min {min_data:.{precision}f} {channel.unit}") print(f" Mean {mean_data:.{precision}f} {channel.unit}") print(f" Max {max_data:.{precision}f} {channel.unit}") print() def show_power_plot(dlog): handles = list() for slot in dlog.slots: if "W" in slot: (handle,) = plt.plot( dlog.timestamps, slot["W"].data, "b-", label="P", markersize=1 ) handles.append(handle) (handle,) = plt.plot( dlog.timestamps, running_mean(slot["W"].data, 10), "r-", label="mean(P, 10)", markersize=1, ) handles.append(handle) elif "V" in slot and "A" in slot: (handle,) = plt.plot( dlog.timestamps, slot["V"].data * slot["A"].data, "b-", label="P = U * I", markersize=1, ) handles.append(handle) (handle,) = plt.plot( dlog.timestamps, running_mean(slot["V"].data * slot["A"].data, 10), "r-", label="mean(P, 10)", markersize=1, ) handles.append(handle) plt.legend(handles=handles) plt.xlabel("Time [s]") plt.ylabel("Power [W]") plt.grid(True) plt.show() def show_raw_plot(dlog): handles = list() for channel in dlog.channels: label = f"{channel.slot} / {channel.smu} {channel.unit}" (handle,) = plt.plot( dlog.timestamps, channel.data, "b-", label=label, markersize=1 ) handles.append(handle) (handle,) = plt.plot( dlog.timestamps, running_mean(channel.data, 10), "r-", label=f"mean({label}, 10)", markersize=1, ) handles.append(handle) plt.legend(handles=handles) plt.xlabel("Time [s]") plt.ylabel("Voltage [V] / Current [A] / Power [W]") plt.grid(True) plt.show() def export_csv(dlog, filename): cols, rows = dlog.data.shape with open(filename, "w", newline="") as f: writer = csv.writer(f) channel_header = list( map(lambda x: f"{x.smu} in slot {x.slot} [{x.unit}]", dlog.channels) ) writer.writerow(["Timestamp [s]"] + channel_header) for row in range(rows): writer.writerow([dlog.timestamps[row]] + list(dlog.data[:, row])) def main(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__ ) parser.add_argument( "--csv-export", type=str, help="Export measurements to CSV file" ) parser.add_argument( "--plot", help="Draw plots of voltage/current/power overtime", action="store_true", ) parser.add_argument( "--stat", help="Print mean voltage, current, and power", action="store_true" ) parser.add_argument( "dlog_file", type=str, help="Input filename in Keysight dlog format" ) args = parser.parse_args() dlog = DLog(args.dlog_file) if args.stat: print_stats(dlog) if args.csv_export: export_csv(dlog, args.csv_export) if args.plot: if dlog.all_data_slots_have_power(): show_power_plot(dlog) else: show_raw_plot(dlog) if __name__ == "__main__": main()