#!/usr/bin/env python3 # vim:tabstop=4 softtabstop=4 shiftwidth=4 textwidth=160 smarttab expandtab colorcolumn=160 # # Copyright (C) 2023 Daniel Friesel # # SPDX-License-Identifier: GPL-2.0-or-later """plot-conversion-efficiency - Show several conversion efficiency plots at once DESCRIPTION fixme OPTIONS """ import argparse import bisect import numpy as np from matplotlib import cm import matplotlib.pyplot as plt matplotlib_theme = "fast" def neighbouring_avg(data, timestamp, eps=0.1): samples = list() range_left = bisect.bisect_left(data[:, 0], timestamp - eps) range_right = bisect.bisect_right(data[:, 0], timestamp + eps) samples = data[range_left:range_right, 1] if not len(samples): return None return np.mean(samples) def load_korad(filename, skip=None, limit=None): if filename.endswith(".xz"): import lzma with lzma.open(filename, "rt") as f: log_data = f.read() else: with open(filename, "r") as f: log_data = f.read() lines = log_data.split("\n") data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines)) data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines) data = np.empty((data_count, 3)) skip_index = 0 limit_index = data_count for i, line in enumerate(data_lines): fields = line.split() if len(fields) == 3: timestamp, voltage, current = map(float, fields) elif len(fields) == 5: timestamp, voltage, current, max_voltage, max_current = map(float, fields) else: raise RuntimeError('cannot parse line "{}"'.format(line)) if i == 0: first_timestamp = timestamp timestamp = timestamp - first_timestamp if skip is not None and timestamp < skip: skip_index = i + 1 continue if limit is not None and timestamp > limit: limit_index = i - 1 break data[i] = [timestamp, current, voltage] data = data[skip_index:limit_index] return data def load_ads1115(filename, in_channel, out_channel): readings = list() first_timestamp = None with open(filename, "r") as f: for line in f: if line.startswith("#"): continue timestamp, channel, voltage = line.split() timestamp = float(timestamp) channel = int(channel) voltage = float(voltage) if abs(voltage) > 1: if first_timestamp is None: first_timestamp = timestamp timestamp -= first_timestamp readings.append((timestamp, channel, voltage)) vin_t = list() vout_t = list() vout_vin = list() last_vin = None last_vout = None for timestamp, channel, voltage in readings: if channel == in_channel: vin_t.append((timestamp, voltage)) if last_vin is not None and last_vout is not None: vout_vin.append((np.mean((last_vin, voltage)), last_vout)) last_vin = voltage elif channel == out_channel: vout_t.append((timestamp, voltage)) if last_vin is not None and last_vout is not None: vout_vin.append((last_vin, np.mean((last_vout, voltage)))) last_vout = voltage return np.array(vin_t), np.array(vout_t), np.array(vout_vin) def main(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__ ) parser.add_argument( "--skip", metavar="N", type=float, default=0, help="Skip the first N seconds of data. This is useful to avoid startup code influencing the results of a long-running measurement", ) parser.add_argument( "--limit", type=float, metavar="N", help="Limit analysis to the first N seconds of data", ) parser.add_argument( "--in-channel", metavar="CHANNEL", type=int, default=0, help="ADS1115 input channel", ) parser.add_argument( "--out-channel", metavar="CHANNEL", type=int, default=2, help="ADS1115 output channel", ) parser.add_argument( "--dark-mode", action="store_true", help="Show plots on a dark background" ) parser.add_argument("--title", type=str, help="Plot title") parser.add_argument( "files", type=str, nargs="+", help="Pairs of ::", ) args = parser.parse_args() if args.dark_mode: global matplotlib_theme matplotlib_theme = "dark_background" cmap = cm.get_cmap("winter") handles = list() for i, pair in enumerate(args.files): out_current, korad_file, ads1115_file = pair.split(":") out_current = float(out_current) iin_t = load_korad(korad_file, args.skip, args.limit) vin_t, vout_t, vout_vin = load_ads1115( ads1115_file, args.in_channel, args.out_channel ) voltage_in = list() power_in = list() power_out = list() for timestamp, in_current, in_voltage in iin_t: v_in = neighbouring_avg(vin_t, timestamp) v_out = neighbouring_avg(vout_t, timestamp) if v_in is None or v_out is None: continue voltage_in.append(v_in) power_in.append(v_in * in_current) power_out.append(v_out * out_current) voltage_in = np.array(voltage_in) power_in = np.array(power_in) power_out = np.array(power_out) (handle,) = plt.plot( voltage_in, power_out / power_in, linestyle="none", marker="s", color=cmap(i / len(args.files)), markersize=2, label=f"{out_current:0.2f} A", ) handles.append(handle) plt.legend(handles=handles, title="Output Current") if args.title: plt.title(args.title) plt.xlabel("Input Voltage [V]") plt.ylabel("Conversion Efficiency [%]") plt.show() if __name__ == "__main__": main()