From 0558244645611f314f47e0fa427f7323ce253eaf Mon Sep 17 00:00:00 2001 From: Daniel Friesel Date: Mon, 7 Sep 2020 12:57:04 +0200 Subject: remove external libraries from main branch --- .../modernjson/detail/conversions/from_json.hpp | 370 ------- .../lib/modernjson/detail/conversions/to_chars.hpp | 1094 -------------------- .../lib/modernjson/detail/conversions/to_json.hpp | 342 ------ 3 files changed, 1806 deletions(-) delete mode 100644 include/lib/modernjson/detail/conversions/from_json.hpp delete mode 100644 include/lib/modernjson/detail/conversions/to_chars.hpp delete mode 100644 include/lib/modernjson/detail/conversions/to_json.hpp (limited to 'include/lib/modernjson/detail/conversions') diff --git a/include/lib/modernjson/detail/conversions/from_json.hpp b/include/lib/modernjson/detail/conversions/from_json.hpp deleted file mode 100644 index 817d4b7..0000000 --- a/include/lib/modernjson/detail/conversions/from_json.hpp +++ /dev/null @@ -1,370 +0,0 @@ -#pragma once - -#include // transform -#include // array -#include // and, not -#include // forward_list -#include // inserter, front_inserter, end -#include // map -#include // string -#include // tuple, make_tuple -#include // is_arithmetic, is_same, is_enum, underlying_type, is_convertible -#include // unordered_map -#include // pair, declval -#include // valarray - -#include -#include -#include -#include -#include - -namespace nlohmann -{ -namespace detail -{ -template -void from_json(const BasicJsonType& j, typename std::nullptr_t& n) -{ - if (JSON_UNLIKELY(not j.is_null())) - { - JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name()))); - } - n = nullptr; -} - -// overloads for basic_json template parameters -template::value and - not std::is_same::value, - int> = 0> -void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val) -{ - switch (static_cast(j)) - { - case value_t::number_unsigned: - { - val = static_cast(*j.template get_ptr()); - break; - } - case value_t::number_integer: - { - val = static_cast(*j.template get_ptr()); - break; - } - case value_t::number_float: - { - val = static_cast(*j.template get_ptr()); - break; - } - - default: - JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name()))); - } -} - -template -void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b) -{ - if (JSON_UNLIKELY(not j.is_boolean())) - { - JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name()))); - } - b = *j.template get_ptr(); -} - -template -void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s) -{ - if (JSON_UNLIKELY(not j.is_string())) - { - JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name()))); - } - s = *j.template get_ptr(); -} - -template < - typename BasicJsonType, typename ConstructibleStringType, - enable_if_t < - is_constructible_string_type::value and - not std::is_same::value, - int > = 0 > -void from_json(const BasicJsonType& j, ConstructibleStringType& s) -{ - if (JSON_UNLIKELY(not j.is_string())) - { - JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name()))); - } - - s = *j.template get_ptr(); -} - -template -void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val) -{ - get_arithmetic_value(j, val); -} - -template -void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val) -{ - get_arithmetic_value(j, val); -} - -template -void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val) -{ - get_arithmetic_value(j, val); -} - -template::value, int> = 0> -void from_json(const BasicJsonType& j, EnumType& e) -{ - typename std::underlying_type::type val; - get_arithmetic_value(j, val); - e = static_cast(val); -} - -// forward_list doesn't have an insert method -template::value, int> = 0> -void from_json(const BasicJsonType& j, std::forward_list& l) -{ - if (JSON_UNLIKELY(not j.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); - } - std::transform(j.rbegin(), j.rend(), - std::front_inserter(l), [](const BasicJsonType & i) - { - return i.template get(); - }); -} - -// valarray doesn't have an insert method -template::value, int> = 0> -void from_json(const BasicJsonType& j, std::valarray& l) -{ - if (JSON_UNLIKELY(not j.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); - } - l.resize(j.size()); - std::copy(j.m_value.array->begin(), j.m_value.array->end(), std::begin(l)); -} - -template -void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/) -{ - arr = *j.template get_ptr(); -} - -template -auto from_json_array_impl(const BasicJsonType& j, std::array& arr, - priority_tag<2> /*unused*/) --> decltype(j.template get(), void()) -{ - for (std::size_t i = 0; i < N; ++i) - { - arr[i] = j.at(i).template get(); - } -} - -template -auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/) --> decltype( - arr.reserve(std::declval()), - j.template get(), - void()) -{ - using std::end; - - arr.reserve(j.size()); - std::transform(j.begin(), j.end(), - std::inserter(arr, end(arr)), [](const BasicJsonType & i) - { - // get() returns *this, this won't call a from_json - // method when value_type is BasicJsonType - return i.template get(); - }); -} - -template -void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, - priority_tag<0> /*unused*/) -{ - using std::end; - - std::transform( - j.begin(), j.end(), std::inserter(arr, end(arr)), - [](const BasicJsonType & i) - { - // get() returns *this, this won't call a from_json - // method when value_type is BasicJsonType - return i.template get(); - }); -} - -template ::value and - not is_constructible_object_type::value and - not is_constructible_string_type::value and - not is_basic_json::value, - int > = 0 > - -auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr) --> decltype(from_json_array_impl(j, arr, priority_tag<3> {}), -j.template get(), -void()) -{ - if (JSON_UNLIKELY(not j.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + - std::string(j.type_name()))); - } - - from_json_array_impl(j, arr, priority_tag<3> {}); -} - -template::value, int> = 0> -void from_json(const BasicJsonType& j, ConstructibleObjectType& obj) -{ - if (JSON_UNLIKELY(not j.is_object())) - { - JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name()))); - } - - auto inner_object = j.template get_ptr(); - using value_type = typename ConstructibleObjectType::value_type; - std::transform( - inner_object->begin(), inner_object->end(), - std::inserter(obj, obj.begin()), - [](typename BasicJsonType::object_t::value_type const & p) - { - return value_type(p.first, p.second.template get()); - }); -} - -// overload for arithmetic types, not chosen for basic_json template arguments -// (BooleanType, etc..); note: Is it really necessary to provide explicit -// overloads for boolean_t etc. in case of a custom BooleanType which is not -// an arithmetic type? -template::value and - not std::is_same::value and - not std::is_same::value and - not std::is_same::value and - not std::is_same::value, - int> = 0> -void from_json(const BasicJsonType& j, ArithmeticType& val) -{ - switch (static_cast(j)) - { - case value_t::number_unsigned: - { - val = static_cast(*j.template get_ptr()); - break; - } - case value_t::number_integer: - { - val = static_cast(*j.template get_ptr()); - break; - } - case value_t::number_float: - { - val = static_cast(*j.template get_ptr()); - break; - } - case value_t::boolean: - { - val = static_cast(*j.template get_ptr()); - break; - } - - default: - JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name()))); - } -} - -template -void from_json(const BasicJsonType& j, std::pair& p) -{ - p = {j.at(0).template get(), j.at(1).template get()}; -} - -template -void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence /*unused*/) -{ - t = std::make_tuple(j.at(Idx).template get::type>()...); -} - -template -void from_json(const BasicJsonType& j, std::tuple& t) -{ - from_json_tuple_impl(j, t, index_sequence_for {}); -} - -template ::value>> -void from_json(const BasicJsonType& j, std::map& m) -{ - if (JSON_UNLIKELY(not j.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); - } - for (const auto& p : j) - { - if (JSON_UNLIKELY(not p.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name()))); - } - m.emplace(p.at(0).template get(), p.at(1).template get()); - } -} - -template ::value>> -void from_json(const BasicJsonType& j, std::unordered_map& m) -{ - if (JSON_UNLIKELY(not j.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); - } - for (const auto& p : j) - { - if (JSON_UNLIKELY(not p.is_array())) - { - JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name()))); - } - m.emplace(p.at(0).template get(), p.at(1).template get()); - } -} - -struct from_json_fn -{ - template - auto operator()(const BasicJsonType& j, T& val) const - noexcept(noexcept(from_json(j, val))) - -> decltype(from_json(j, val), void()) - { - return from_json(j, val); - } -}; -} // namespace detail - -/// namespace to hold default `from_json` function -/// to see why this is required: -/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html -namespace -{ -constexpr const auto& from_json = detail::static_const::value; -} // namespace -} // namespace nlohmann diff --git a/include/lib/modernjson/detail/conversions/to_chars.hpp b/include/lib/modernjson/detail/conversions/to_chars.hpp deleted file mode 100644 index b32e176..0000000 --- a/include/lib/modernjson/detail/conversions/to_chars.hpp +++ /dev/null @@ -1,1094 +0,0 @@ -#pragma once - -#include // assert -#include // or, and, not -#include // signbit, isfinite -#include // intN_t, uintN_t -#include // memcpy, memmove - -namespace nlohmann -{ -namespace detail -{ - -/*! -@brief implements the Grisu2 algorithm for binary to decimal floating-point -conversion. - -This implementation is a slightly modified version of the reference -implementation which may be obtained from -http://florian.loitsch.com/publications (bench.tar.gz). - -The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch. - -For a detailed description of the algorithm see: - -[1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with - Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming - Language Design and Implementation, PLDI 2010 -[2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately", - Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language - Design and Implementation, PLDI 1996 -*/ -namespace dtoa_impl -{ - -template -Target reinterpret_bits(const Source source) -{ - static_assert(sizeof(Target) == sizeof(Source), "size mismatch"); - - Target target; - std::memcpy(&target, &source, sizeof(Source)); - return target; -} - -struct diyfp // f * 2^e -{ - static constexpr int kPrecision = 64; // = q - - uint64_t f = 0; - int e = 0; - - constexpr diyfp(uint64_t f_, int e_) noexcept : f(f_), e(e_) {} - - /*! - @brief returns x - y - @pre x.e == y.e and x.f >= y.f - */ - static diyfp sub(const diyfp& x, const diyfp& y) noexcept - { - assert(x.e == y.e); - assert(x.f >= y.f); - - return {x.f - y.f, x.e}; - } - - /*! - @brief returns x * y - @note The result is rounded. (Only the upper q bits are returned.) - */ - static diyfp mul(const diyfp& x, const diyfp& y) noexcept - { - static_assert(kPrecision == 64, "internal error"); - - // Computes: - // f = round((x.f * y.f) / 2^q) - // e = x.e + y.e + q - - // Emulate the 64-bit * 64-bit multiplication: - // - // p = u * v - // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi) - // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi ) - // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 ) - // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) - // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3) - // = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) - // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H ) - // - // (Since Q might be larger than 2^32 - 1) - // - // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H) - // - // (Q_hi + H does not overflow a 64-bit int) - // - // = p_lo + 2^64 p_hi - - const uint64_t u_lo = x.f & 0xFFFFFFFF; - const uint64_t u_hi = x.f >> 32; - const uint64_t v_lo = y.f & 0xFFFFFFFF; - const uint64_t v_hi = y.f >> 32; - - const uint64_t p0 = u_lo * v_lo; - const uint64_t p1 = u_lo * v_hi; - const uint64_t p2 = u_hi * v_lo; - const uint64_t p3 = u_hi * v_hi; - - const uint64_t p0_hi = p0 >> 32; - const uint64_t p1_lo = p1 & 0xFFFFFFFF; - const uint64_t p1_hi = p1 >> 32; - const uint64_t p2_lo = p2 & 0xFFFFFFFF; - const uint64_t p2_hi = p2 >> 32; - - uint64_t Q = p0_hi + p1_lo + p2_lo; - - // The full product might now be computed as - // - // p_hi = p3 + p2_hi + p1_hi + (Q >> 32) - // p_lo = p0_lo + (Q << 32) - // - // But in this particular case here, the full p_lo is not required. - // Effectively we only need to add the highest bit in p_lo to p_hi (and - // Q_hi + 1 does not overflow). - - Q += uint64_t{1} << (64 - 32 - 1); // round, ties up - - const uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32); - - return {h, x.e + y.e + 64}; - } - - /*! - @brief normalize x such that the significand is >= 2^(q-1) - @pre x.f != 0 - */ - static diyfp normalize(diyfp x) noexcept - { - assert(x.f != 0); - - while ((x.f >> 63) == 0) - { - x.f <<= 1; - x.e--; - } - - return x; - } - - /*! - @brief normalize x such that the result has the exponent E - @pre e >= x.e and the upper e - x.e bits of x.f must be zero. - */ - static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept - { - const int delta = x.e - target_exponent; - - assert(delta >= 0); - assert(((x.f << delta) >> delta) == x.f); - - return {x.f << delta, target_exponent}; - } -}; - -struct boundaries -{ - diyfp w; - diyfp minus; - diyfp plus; -}; - -/*! -Compute the (normalized) diyfp representing the input number 'value' and its -boundaries. - -@pre value must be finite and positive -*/ -template -boundaries compute_boundaries(FloatType value) -{ - assert(std::isfinite(value)); - assert(value > 0); - - // Convert the IEEE representation into a diyfp. - // - // If v is denormal: - // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1)) - // If v is normalized: - // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1)) - - static_assert(std::numeric_limits::is_iec559, - "internal error: dtoa_short requires an IEEE-754 floating-point implementation"); - - constexpr int kPrecision = std::numeric_limits::digits; // = p (includes the hidden bit) - constexpr int kBias = std::numeric_limits::max_exponent - 1 + (kPrecision - 1); - constexpr int kMinExp = 1 - kBias; - constexpr uint64_t kHiddenBit = uint64_t{1} << (kPrecision - 1); // = 2^(p-1) - - using bits_type = typename std::conditional< kPrecision == 24, uint32_t, uint64_t >::type; - - const uint64_t bits = reinterpret_bits(value); - const uint64_t E = bits >> (kPrecision - 1); - const uint64_t F = bits & (kHiddenBit - 1); - - const bool is_denormal = (E == 0); - const diyfp v = is_denormal - ? diyfp(F, kMinExp) - : diyfp(F + kHiddenBit, static_cast(E) - kBias); - - // Compute the boundaries m- and m+ of the floating-point value - // v = f * 2^e. - // - // Determine v- and v+, the floating-point predecessor and successor if v, - // respectively. - // - // v- = v - 2^e if f != 2^(p-1) or e == e_min (A) - // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B) - // - // v+ = v + 2^e - // - // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_ - // between m- and m+ round to v, regardless of how the input rounding - // algorithm breaks ties. - // - // ---+-------------+-------------+-------------+-------------+--- (A) - // v- m- v m+ v+ - // - // -----------------+------+------+-------------+-------------+--- (B) - // v- m- v m+ v+ - - const bool lower_boundary_is_closer = (F == 0 and E > 1); - const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); - const diyfp m_minus = lower_boundary_is_closer - ? diyfp(4 * v.f - 1, v.e - 2) // (B) - : diyfp(2 * v.f - 1, v.e - 1); // (A) - - // Determine the normalized w+ = m+. - const diyfp w_plus = diyfp::normalize(m_plus); - - // Determine w- = m- such that e_(w-) = e_(w+). - const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e); - - return {diyfp::normalize(v), w_minus, w_plus}; -} - -// Given normalized diyfp w, Grisu needs to find a (normalized) cached -// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies -// within a certain range [alpha, gamma] (Definition 3.2 from [1]) -// -// alpha <= e = e_c + e_w + q <= gamma -// -// or -// -// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q -// <= f_c * f_w * 2^gamma -// -// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies -// -// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma -// -// or -// -// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma) -// -// The choice of (alpha,gamma) determines the size of the table and the form of -// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well -// in practice: -// -// The idea is to cut the number c * w = f * 2^e into two parts, which can be -// processed independently: An integral part p1, and a fractional part p2: -// -// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e -// = (f div 2^-e) + (f mod 2^-e) * 2^e -// = p1 + p2 * 2^e -// -// The conversion of p1 into decimal form requires a series of divisions and -// modulos by (a power of) 10. These operations are faster for 32-bit than for -// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be -// achieved by choosing -// -// -e >= 32 or e <= -32 := gamma -// -// In order to convert the fractional part -// -// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ... -// -// into decimal form, the fraction is repeatedly multiplied by 10 and the digits -// d[-i] are extracted in order: -// -// (10 * p2) div 2^-e = d[-1] -// (10 * p2) mod 2^-e = d[-2] / 10^1 + ... -// -// The multiplication by 10 must not overflow. It is sufficient to choose -// -// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64. -// -// Since p2 = f mod 2^-e < 2^-e, -// -// -e <= 60 or e >= -60 := alpha - -constexpr int kAlpha = -60; -constexpr int kGamma = -32; - -struct cached_power // c = f * 2^e ~= 10^k -{ - uint64_t f; - int e; - int k; -}; - -/*! -For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached -power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c -satisfies (Definition 3.2 from [1]) - - alpha <= e_c + e + q <= gamma. -*/ -inline cached_power get_cached_power_for_binary_exponent(int e) -{ - // Now - // - // alpha <= e_c + e + q <= gamma (1) - // ==> f_c * 2^alpha <= c * 2^e * 2^q - // - // and since the c's are normalized, 2^(q-1) <= f_c, - // - // ==> 2^(q - 1 + alpha) <= c * 2^(e + q) - // ==> 2^(alpha - e - 1) <= c - // - // If c were an exakt power of ten, i.e. c = 10^k, one may determine k as - // - // k = ceil( log_10( 2^(alpha - e - 1) ) ) - // = ceil( (alpha - e - 1) * log_10(2) ) - // - // From the paper: - // "In theory the result of the procedure could be wrong since c is rounded, - // and the computation itself is approximated [...]. In practice, however, - // this simple function is sufficient." - // - // For IEEE double precision floating-point numbers converted into - // normalized diyfp's w = f * 2^e, with q = 64, - // - // e >= -1022 (min IEEE exponent) - // -52 (p - 1) - // -52 (p - 1, possibly normalize denormal IEEE numbers) - // -11 (normalize the diyfp) - // = -1137 - // - // and - // - // e <= +1023 (max IEEE exponent) - // -52 (p - 1) - // -11 (normalize the diyfp) - // = 960 - // - // This binary exponent range [-1137,960] results in a decimal exponent - // range [-307,324]. One does not need to store a cached power for each - // k in this range. For each such k it suffices to find a cached power - // such that the exponent of the product lies in [alpha,gamma]. - // This implies that the difference of the decimal exponents of adjacent - // table entries must be less than or equal to - // - // floor( (gamma - alpha) * log_10(2) ) = 8. - // - // (A smaller distance gamma-alpha would require a larger table.) - - // NB: - // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34. - - constexpr int kCachedPowersSize = 79; - constexpr int kCachedPowersMinDecExp = -300; - constexpr int kCachedPowersDecStep = 8; - - static constexpr cached_power kCachedPowers[] = - { - { 0xAB70FE17C79AC6CA, -1060, -300 }, - { 0xFF77B1FCBEBCDC4F, -1034, -292 }, - { 0xBE5691EF416BD60C, -1007, -284 }, - { 0x8DD01FAD907FFC3C, -980, -276 }, - { 0xD3515C2831559A83, -954, -268 }, - { 0x9D71AC8FADA6C9B5, -927, -260 }, - { 0xEA9C227723EE8BCB, -901, -252 }, - { 0xAECC49914078536D, -874, -244 }, - { 0x823C12795DB6CE57, -847, -236 }, - { 0xC21094364DFB5637, -821, -228 }, - { 0x9096EA6F3848984F, -794, -220 }, - { 0xD77485CB25823AC7, -768, -212 }, - { 0xA086CFCD97BF97F4, -741, -204 }, - { 0xEF340A98172AACE5, -715, -196 }, - { 0xB23867FB2A35B28E, -688, -188 }, - { 0x84C8D4DFD2C63F3B, -661, -180 }, - { 0xC5DD44271AD3CDBA, -635, -172 }, - { 0x936B9FCEBB25C996, -608, -164 }, - { 0xDBAC6C247D62A584, -582, -156 }, - { 0xA3AB66580D5FDAF6, -555, -148 }, - { 0xF3E2F893DEC3F126, -529, -140 }, - { 0xB5B5ADA8AAFF80B8, -502, -132 }, - { 0x87625F056C7C4A8B, -475, -124 }, - { 0xC9BCFF6034C13053, -449, -116 }, - { 0x964E858C91BA2655, -422, -108 }, - { 0xDFF9772470297EBD, -396, -100 }, - { 0xA6DFBD9FB8E5B88F, -369, -92 }, - { 0xF8A95FCF88747D94, -343, -84 }, - { 0xB94470938FA89BCF, -316, -76 }, - { 0x8A08F0F8BF0F156B, -289, -68 }, - { 0xCDB02555653131B6, -263, -60 }, - { 0x993FE2C6D07B7FAC, -236, -52 }, - { 0xE45C10C42A2B3B06, -210, -44 }, - { 0xAA242499697392D3, -183, -36 }, - { 0xFD87B5F28300CA0E, -157, -28 }, - { 0xBCE5086492111AEB, -130, -20 }, - { 0x8CBCCC096F5088CC, -103, -12 }, - { 0xD1B71758E219652C, -77, -4 }, - { 0x9C40000000000000, -50, 4 }, - { 0xE8D4A51000000000, -24, 12 }, - { 0xAD78EBC5AC620000, 3, 20 }, - { 0x813F3978F8940984, 30, 28 }, - { 0xC097CE7BC90715B3, 56, 36 }, - { 0x8F7E32CE7BEA5C70, 83, 44 }, - { 0xD5D238A4ABE98068, 109, 52 }, - { 0x9F4F2726179A2245, 136, 60 }, - { 0xED63A231D4C4FB27, 162, 68 }, - { 0xB0DE65388CC8ADA8, 189, 76 }, - { 0x83C7088E1AAB65DB, 216, 84 }, - { 0xC45D1DF942711D9A, 242, 92 }, - { 0x924D692CA61BE758, 269, 100 }, - { 0xDA01EE641A708DEA, 295, 108 }, - { 0xA26DA3999AEF774A, 322, 116 }, - { 0xF209787BB47D6B85, 348, 124 }, - { 0xB454E4A179DD1877, 375, 132 }, - { 0x865B86925B9BC5C2, 402, 140 }, - { 0xC83553C5C8965D3D, 428, 148 }, - { 0x952AB45CFA97A0B3, 455, 156 }, - { 0xDE469FBD99A05FE3, 481, 164 }, - { 0xA59BC234DB398C25, 508, 172 }, - { 0xF6C69A72A3989F5C, 534, 180 }, - { 0xB7DCBF5354E9BECE, 561, 188 }, - { 0x88FCF317F22241E2, 588, 196 }, - { 0xCC20CE9BD35C78A5, 614, 204 }, - { 0x98165AF37B2153DF, 641, 212 }, - { 0xE2A0B5DC971F303A, 667, 220 }, - { 0xA8D9D1535CE3B396, 694, 228 }, - { 0xFB9B7CD9A4A7443C, 720, 236 }, - { 0xBB764C4CA7A44410, 747, 244 }, - { 0x8BAB8EEFB6409C1A, 774, 252 }, - { 0xD01FEF10A657842C, 800, 260 }, - { 0x9B10A4E5E9913129, 827, 268 }, - { 0xE7109BFBA19C0C9D, 853, 276 }, - { 0xAC2820D9623BF429, 880, 284 }, - { 0x80444B5E7AA7CF85, 907, 292 }, - { 0xBF21E44003ACDD2D, 933, 300 }, - { 0x8E679C2F5E44FF8F, 960, 308 }, - { 0xD433179D9C8CB841, 986, 316 }, - { 0x9E19DB92B4E31BA9, 1013, 324 }, - }; - - // This computation gives exactly the same results for k as - // k = ceil((kAlpha - e - 1) * 0.30102999566398114) - // for |e| <= 1500, but doesn't require floating-point operations. - // NB: log_10(2) ~= 78913 / 2^18 - assert(e >= -1500); - assert(e <= 1500); - const int f = kAlpha - e - 1; - const int k = (f * 78913) / (1 << 18) + static_cast(f > 0); - - const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; - assert(index >= 0); - assert(index < kCachedPowersSize); - static_cast(kCachedPowersSize); // Fix warning. - - const cached_power cached = kCachedPowers[index]; - assert(kAlpha <= cached.e + e + 64); - assert(kGamma >= cached.e + e + 64); - - return cached; -} - -/*! -For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k. -For n == 0, returns 1 and sets pow10 := 1. -*/ -inline int find_largest_pow10(const uint32_t n, uint32_t& pow10) -{ - // LCOV_EXCL_START - if (n >= 1000000000) - { - pow10 = 1000000000; - return 10; - } - // LCOV_EXCL_STOP - else if (n >= 100000000) - { - pow10 = 100000000; - return 9; - } - else if (n >= 10000000) - { - pow10 = 10000000; - return 8; - } - else if (n >= 1000000) - { - pow10 = 1000000; - return 7; - } - else if (n >= 100000) - { - pow10 = 100000; - return 6; - } - else if (n >= 10000) - { - pow10 = 10000; - return 5; - } - else if (n >= 1000) - { - pow10 = 1000; - return 4; - } - else if (n >= 100) - { - pow10 = 100; - return 3; - } - else if (n >= 10) - { - pow10 = 10; - return 2; - } - else - { - pow10 = 1; - return 1; - } -} - -inline void grisu2_round(char* buf, int len, uint64_t dist, uint64_t delta, - uint64_t rest, uint64_t ten_k) -{ - assert(len >= 1); - assert(dist <= delta); - assert(rest <= delta); - assert(ten_k > 0); - - // <--------------------------- delta ----> - // <---- dist ---------> - // --------------[------------------+-------------------]-------------- - // M- w M+ - // - // ten_k - // <------> - // <---- rest ----> - // --------------[------------------+----+--------------]-------------- - // w V - // = buf * 10^k - // - // ten_k represents a unit-in-the-last-place in the decimal representation - // stored in buf. - // Decrement buf by ten_k while this takes buf closer to w. - - // The tests are written in this order to avoid overflow in unsigned - // integer arithmetic. - - while (rest < dist - and delta - rest >= ten_k - and (rest + ten_k < dist or dist - rest > rest + ten_k - dist)) - { - assert(buf[len - 1] != '0'); - buf[len - 1]--; - rest += ten_k; - } -} - -/*! -Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+. -M- and M+ must be normalized and share the same exponent -60 <= e <= -32. -*/ -inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent, - diyfp M_minus, diyfp w, diyfp M_plus) -{ - static_assert(kAlpha >= -60, "internal error"); - static_assert(kGamma <= -32, "internal error"); - - // Generates the digits (and the exponent) of a decimal floating-point - // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's - // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma. - // - // <--------------------------- delta ----> - // <---- dist ---------> - // --------------[------------------+-------------------]-------------- - // M- w M+ - // - // Grisu2 generates the digits of M+ from left to right and stops as soon as - // V is in [M-,M+]. - - assert(M_plus.e >= kAlpha); - assert(M_plus.e <= kGamma); - - uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e) - uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e) - - // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0): - // - // M+ = f * 2^e - // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e - // = ((p1 ) * 2^-e + (p2 )) * 2^e - // = p1 + p2 * 2^e - - const diyfp one(uint64_t{1} << -M_plus.e, M_plus.e); - - auto p1 = static_cast(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.) - uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e - - // 1) - // - // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0] - - assert(p1 > 0); - - uint32_t pow10; - const int k = find_largest_pow10(p1, pow10); - - // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1) - // - // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1)) - // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1)) - // - // M+ = p1 + p2 * 2^e - // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e - // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e - // = d[k-1] * 10^(k-1) + ( rest) * 2^e - // - // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0) - // - // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0] - // - // but stop as soon as - // - // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e - - int n = k; - while (n > 0) - { - // Invariants: - // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k) - // pow10 = 10^(n-1) <= p1 < 10^n - // - const uint32_t d = p1 / pow10; // d = p1 div 10^(n-1) - const uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1) - // - // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e - // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e) - // - assert(d <= 9); - buffer[length++] = static_cast('0' + d); // buffer := buffer * 10 + d - // - // M+ = buffer * 10^(n-1) + (r + p2 * 2^e) - // - p1 = r; - n--; - // - // M+ = buffer * 10^n + (p1 + p2 * 2^e) - // pow10 = 10^n - // - - // Now check if enough digits have been generated. - // Compute - // - // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e - // - // Note: - // Since rest and delta share the same exponent e, it suffices to - // compare the significands. - const uint64_t rest = (uint64_t{p1} << -one.e) + p2; - if (rest <= delta) - { - // V = buffer * 10^n, with M- <= V <= M+. - - decimal_exponent += n; - - // We may now just stop. But instead look if the buffer could be - // decremented to bring V closer to w. - // - // pow10 = 10^n is now 1 ulp in the decimal representation V. - // The rounding procedure works with diyfp's with an implicit - // exponent of e. - // - // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e - // - const uint64_t ten_n = uint64_t{pow10} << -one.e; - grisu2_round(buffer, length, dist, delta, rest, ten_n); - - return; - } - - pow10 /= 10; - // - // pow10 = 10^(n-1) <= p1 < 10^n - // Invariants restored. - } - - // 2) - // - // The digits of the integral part have been generated: - // - // M+ = d[k-1]...d[1]d[0] + p2 * 2^e - // = buffer + p2 * 2^e - // - // Now generate the digits of the fractional part p2 * 2^e. - // - // Note: - // No decimal point is generated: the exponent is adjusted instead. - // - // p2 actually represents the fraction - // - // p2 * 2^e - // = p2 / 2^-e - // = d[-1] / 10^1 + d[-2] / 10^2 + ... - // - // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...) - // - // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m - // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...) - // - // using - // - // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e) - // = ( d) * 2^-e + ( r) - // - // or - // 10^m * p2 * 2^e = d + r * 2^e - // - // i.e. - // - // M+ = buffer + p2 * 2^e - // = buffer + 10^-m * (d + r * 2^e) - // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e - // - // and stop as soon as 10^-m * r * 2^e <= delta * 2^e - - assert(p2 > delta); - - int m = 0; - for (;;) - { - // Invariant: - // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e - // = buffer * 10^-m + 10^-m * (p2 ) * 2^e - // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e - // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e - // - assert(p2 <= UINT64_MAX / 10); - p2 *= 10; - const uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e - const uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e - // - // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e - // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e)) - // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e - // - assert(d <= 9); - buffer[length++] = static_cast('0' + d); // buffer := buffer * 10 + d - // - // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e - // - p2 = r; - m++; - // - // M+ = buffer * 10^-m + 10^-m * p2 * 2^e - // Invariant restored. - - // Check if enough digits have been generated. - // - // 10^-m * p2 * 2^e <= delta * 2^e - // p2 * 2^e <= 10^m * delta * 2^e - // p2 <= 10^m * delta - delta *= 10; - dist *= 10; - if (p2 <= delta) - { - break; - } - } - - // V = buffer * 10^-m, with M- <= V <= M+. - - decimal_exponent -= m; - - // 1 ulp in the decimal representation is now 10^-m. - // Since delta and dist are now scaled by 10^m, we need to do the - // same with ulp in order to keep the units in sync. - // - // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e - // - const uint64_t ten_m = one.f; - grisu2_round(buffer, length, dist, delta, p2, ten_m); - - // By construction this algorithm generates the shortest possible decimal - // number (Loitsch, Theorem 6.2) which rounds back to w. - // For an input number of precision p, at least - // - // N = 1 + ceil(p * log_10(2)) - // - // decimal digits are sufficient to identify all binary floating-point - // numbers (Matula, "In-and-Out conversions"). - // This implies that the algorithm does not produce more than N decimal - // digits. - // - // N = 17 for p = 53 (IEEE double precision) - // N = 9 for p = 24 (IEEE single precision) -} - -/*! -v = buf * 10^decimal_exponent -len is the length of the buffer (number of decimal digits) -The buffer must be large enough, i.e. >= max_digits10. -*/ -inline void grisu2(char* buf, int& len, int& decimal_exponent, - diyfp m_minus, diyfp v, diyfp m_plus) -{ - assert(m_plus.e == m_minus.e); - assert(m_plus.e == v.e); - - // --------(-----------------------+-----------------------)-------- (A) - // m- v m+ - // - // --------------------(-----------+-----------------------)-------- (B) - // m- v m+ - // - // First scale v (and m- and m+) such that the exponent is in the range - // [alpha, gamma]. - - const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e); - - const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k - - // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma] - const diyfp w = diyfp::mul(v, c_minus_k); - const diyfp w_minus = diyfp::mul(m_minus, c_minus_k); - const diyfp w_plus = diyfp::mul(m_plus, c_minus_k); - - // ----(---+---)---------------(---+---)---------------(---+---)---- - // w- w w+ - // = c*m- = c*v = c*m+ - // - // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and - // w+ are now off by a small amount. - // In fact: - // - // w - v * 10^k < 1 ulp - // - // To account for this inaccuracy, add resp. subtract 1 ulp. - // - // --------+---[---------------(---+---)---------------]---+-------- - // w- M- w M+ w+ - // - // Now any number in [M-, M+] (bounds included) will round to w when input, - // regardless of how the input rounding algorithm breaks ties. - // - // And digit_gen generates the shortest possible such number in [M-, M+]. - // Note that this does not mean that Grisu2 always generates the shortest - // possible number in the interval (m-, m+). - const diyfp M_minus(w_minus.f + 1, w_minus.e); - const diyfp M_plus (w_plus.f - 1, w_plus.e ); - - decimal_exponent = -cached.k; // = -(-k) = k - - grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus); -} - -/*! -v = buf * 10^decimal_exponent -len is the length of the buffer (number of decimal digits) -The buffer must be large enough, i.e. >= max_digits10. -*/ -template -void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value) -{ - static_assert(diyfp::kPrecision >= std::numeric_limits::digits + 3, - "internal error: not enough precision"); - - assert(std::isfinite(value)); - assert(value > 0); - - // If the neighbors (and boundaries) of 'value' are always computed for double-precision - // numbers, all float's can be recovered using strtod (and strtof). However, the resulting - // decimal representations are not exactly "short". - // - // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars) - // says "value is converted to a string as if by std::sprintf in the default ("C") locale" - // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars' - // does. - // On the other hand, the documentation for 'std::to_chars' requires that "parsing the - // representation using the corresponding std::from_chars function recovers value exactly". That - // indicates that single precision floating-point numbers should be recovered using - // 'std::strtof'. - // - // NB: If the neighbors are computed for single-precision numbers, there is a single float - // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision - // value is off by 1 ulp. -#if 0 - const boundaries w = compute_boundaries(static_cast(value)); -#else - const boundaries w = compute_boundaries(value); -#endif - - grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus); -} - -/*! -@brief appends a decimal representation of e to buf -@return a pointer to the element following the exponent. -@pre -1000 < e < 1000 -*/ -inline char* append_exponent(char* buf, int e) -{ - assert(e > -1000); - assert(e < 1000); - - if (e < 0) - { - e = -e; - *buf++ = '-'; - } - else - { - *buf++ = '+'; - } - - auto k = static_cast(e); - if (k < 10) - { - // Always print at least two digits in the exponent. - // This is for compatibility with printf("%g"). - *buf++ = '0'; - *buf++ = static_cast('0' + k); - } - else if (k < 100) - { - *buf++ = static_cast('0' + k / 10); - k %= 10; - *buf++ = static_cast('0' + k); - } - else - { - *buf++ = static_cast('0' + k / 100); - k %= 100; - *buf++ = static_cast('0' + k / 10); - k %= 10; - *buf++ = static_cast('0' + k); - } - - return buf; -} - -/*! -@brief prettify v = buf * 10^decimal_exponent - -If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point -notation. Otherwise it will be printed in exponential notation. - -@pre min_exp < 0 -@pre max_exp > 0 -*/ -inline char* format_buffer(char* buf, int len, int decimal_exponent, - int min_exp, int max_exp) -{ - assert(min_exp < 0); - assert(max_exp > 0); - - const int k = len; - const int n = len + decimal_exponent; - - // v = buf * 10^(n-k) - // k is the length of the buffer (number of decimal digits) - // n is the position of the decimal point relative to the start of the buffer. - - if (k <= n and n <= max_exp) - { - // digits[000] - // len <= max_exp + 2 - - std::memset(buf + k, '0', static_cast(n - k)); - // Make it look like a floating-point number (#362, #378) - buf[n + 0] = '.'; - buf[n + 1] = '0'; - return buf + (n + 2); - } - - if (0 < n and n <= max_exp) - { - // dig.its - // len <= max_digits10 + 1 - - assert(k > n); - - std::memmove(buf + (n + 1), buf + n, static_cast(k - n)); - buf[n] = '.'; - return buf + (k + 1); - } - - if (min_exp < n and n <= 0) - { - // 0.[000]digits - // len <= 2 + (-min_exp - 1) + max_digits10 - - std::memmove(buf + (2 + -n), buf, static_cast(k)); - buf[0] = '0'; - buf[1] = '.'; - std::memset(buf + 2, '0', static_cast(-n)); - return buf + (2 + (-n) + k); - } - - if (k == 1) - { - // dE+123 - // len <= 1 + 5 - - buf += 1; - } - else - { - // d.igitsE+123 - // len <= max_digits10 + 1 + 5 - - std::memmove(buf + 2, buf + 1, static_cast(k - 1)); - buf[1] = '.'; - buf += 1 + k; - } - - *buf++ = 'e'; - return append_exponent(buf, n - 1); -} - -} // namespace dtoa_impl - -/*! -@brief generates a decimal representation of the floating-point number value in [first, last). - -The format of the resulting decimal representation is similar to printf's %g -format. Returns an iterator pointing past-the-end of the decimal representation. - -@note The input number must be finite, i.e. NaN's and Inf's are not supported. -@note The buffer must be large enough. -@note The result is NOT null-terminated. -*/ -template -char* to_chars(char* first, const char* last, FloatType value) -{ - static_cast(last); // maybe unused - fix warning - assert(std::isfinite(value)); - - // Use signbit(value) instead of (value < 0) since signbit works for -0. - if (std::signbit(value)) - { - value = -value; - *first++ = '-'; - } - - if (value == 0) // +-0 - { - *first++ = '0'; - // Make it look like a floating-point number (#362, #378) - *first++ = '.'; - *first++ = '0'; - return first; - } - - assert(last - first >= std::numeric_limits::max_digits10); - - // Compute v = buffer * 10^decimal_exponent. - // The decimal digits are stored in the buffer, which needs to be interpreted - // as an unsigned decimal integer. - // len is the length of the buffer, i.e. the number of decimal digits. - int len = 0; - int decimal_exponent = 0; - dtoa_impl::grisu2(first, len, decimal_exponent, value); - - assert(len <= std::numeric_limits::max_digits10); - - // Format the buffer like printf("%.*g", prec, value) - constexpr int kMinExp = -4; - // Use digits10 here to increase compatibility with version 2. - constexpr int kMaxExp = std::numeric_limits::digits10; - - assert(last - first >= kMaxExp + 2); - assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits::max_digits10); - assert(last - first >= std::numeric_limits::max_digits10 + 6); - - return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp); -} - -} // namespace detail -} // namespace nlohmann diff --git a/include/lib/modernjson/detail/conversions/to_json.hpp b/include/lib/modernjson/detail/conversions/to_json.hpp deleted file mode 100644 index 5c3669c..0000000 --- a/include/lib/modernjson/detail/conversions/to_json.hpp +++ /dev/null @@ -1,342 +0,0 @@ -#pragma once - -#include // or, and, not -#include // begin, end -#include // tuple, get -#include // is_same, is_constructible, is_floating_point, is_enum, underlying_type -#include // move, forward, declval, pair -#include // valarray -#include // vector - -#include -#include -#include -#include - -namespace nlohmann -{ -namespace detail -{ -////////////////// -// constructors // -////////////////// - -template struct external_constructor; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept - { - j.m_type = value_t::boolean; - j.m_value = b; - j.assert_invariant(); - } -}; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s) - { - j.m_type = value_t::string; - j.m_value = s; - j.assert_invariant(); - } - - template - static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s) - { - j.m_type = value_t::string; - j.m_value = std::move(s); - j.assert_invariant(); - } - - template::value, - int> = 0> - static void construct(BasicJsonType& j, const CompatibleStringType& str) - { - j.m_type = value_t::string; - j.m_value.string = j.template create(str); - j.assert_invariant(); - } -}; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept - { - j.m_type = value_t::number_float; - j.m_value = val; - j.assert_invariant(); - } -}; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept - { - j.m_type = value_t::number_unsigned; - j.m_value = val; - j.assert_invariant(); - } -}; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept - { - j.m_type = value_t::number_integer; - j.m_value = val; - j.assert_invariant(); - } -}; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr) - { - j.m_type = value_t::array; - j.m_value = arr; - j.assert_invariant(); - } - - template - static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr) - { - j.m_type = value_t::array; - j.m_value = std::move(arr); - j.assert_invariant(); - } - - template::value, - int> = 0> - static void construct(BasicJsonType& j, const CompatibleArrayType& arr) - { - using std::begin; - using std::end; - j.m_type = value_t::array; - j.m_value.array = j.template create(begin(arr), end(arr)); - j.assert_invariant(); - } - - template - static void construct(BasicJsonType& j, const std::vector& arr) - { - j.m_type = value_t::array; - j.m_value = value_t::array; - j.m_value.array->reserve(arr.size()); - for (const bool x : arr) - { - j.m_value.array->push_back(x); - } - j.assert_invariant(); - } - - template::value, int> = 0> - static void construct(BasicJsonType& j, const std::valarray& arr) - { - j.m_type = value_t::array; - j.m_value = value_t::array; - j.m_value.array->resize(arr.size()); - std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin()); - j.assert_invariant(); - } -}; - -template<> -struct external_constructor -{ - template - static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj) - { - j.m_type = value_t::object; - j.m_value = obj; - j.assert_invariant(); - } - - template - static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj) - { - j.m_type = value_t::object; - j.m_value = std::move(obj); - j.assert_invariant(); - } - - template::value, int> = 0> - static void construct(BasicJsonType& j, const CompatibleObjectType& obj) - { - using std::begin; - using std::end; - - j.m_type = value_t::object; - j.m_value.object = j.template create(begin(obj), end(obj)); - j.assert_invariant(); - } -}; - -///////////// -// to_json // -///////////// - -template::value, int> = 0> -void to_json(BasicJsonType& j, T b) noexcept -{ - external_constructor::construct(j, b); -} - -template::value, int> = 0> -void to_json(BasicJsonType& j, const CompatibleString& s) -{ - external_constructor::construct(j, s); -} - -template -void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s) -{ - external_constructor::construct(j, std::move(s)); -} - -template::value, int> = 0> -void to_json(BasicJsonType& j, FloatType val) noexcept -{ - external_constructor::construct(j, static_cast(val)); -} - -template::value, int> = 0> -void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept -{ - external_constructor::construct(j, static_cast(val)); -} - -template::value, int> = 0> -void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept -{ - external_constructor::construct(j, static_cast(val)); -} - -template::value, int> = 0> -void to_json(BasicJsonType& j, EnumType e) noexcept -{ - using underlying_type = typename std::underlying_type::type; - external_constructor::construct(j, static_cast(e)); -} - -template -void to_json(BasicJsonType& j, const std::vector& e) -{ - external_constructor::construct(j, e); -} - -template ::value and - not is_compatible_object_type< - BasicJsonType, CompatibleArrayType>::value and - not is_compatible_string_type::value and - not is_basic_json::value, - int> = 0> -void to_json(BasicJsonType& j, const CompatibleArrayType& arr) -{ - external_constructor::construct(j, arr); -} - -template::value, int> = 0> -void to_json(BasicJsonType& j, const std::valarray& arr) -{ - external_constructor::construct(j, std::move(arr)); -} - -template -void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr) -{ - external_constructor::construct(j, std::move(arr)); -} - -template::value and not is_basic_json::value, int> = 0> -void to_json(BasicJsonType& j, const CompatibleObjectType& obj) -{ - external_constructor::construct(j, obj); -} - -template -void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj) -{ - external_constructor::construct(j, std::move(obj)); -} - -template < - typename BasicJsonType, typename T, std::size_t N, - enable_if_t::value, - int> = 0 > -void to_json(BasicJsonType& j, const T (&arr)[N]) -{ - external_constructor::construct(j, arr); -} - -template -void to_json(BasicJsonType& j, const std::pair& p) -{ - j = {p.first, p.second}; -} - -// for https://github.com/nlohmann/json/pull/1134 -template::iteration_proxy_internal>::value, int> = 0> -void to_json(BasicJsonType& j, const T& b) -{ - j = {{b.key(), b.value()}}; -} - -template -void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence /*unused*/) -{ - j = {std::get(t)...}; -} - -template -void to_json(BasicJsonType& j, const std::tuple& t) -{ - to_json_tuple_impl(j, t, index_sequence_for {}); -} - -struct to_json_fn -{ - template - auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward(val)))) - -> decltype(to_json(j, std::forward(val)), void()) - { - return to_json(j, std::forward(val)); - } -}; -} // namespace detail - -/// namespace to hold default `to_json` function -namespace -{ -constexpr const auto& to_json = detail::static_const::value; -} // namespace -} // namespace nlohmann -- cgit v1.2.3