From 01fd94f7bd70fd93b5dbb3a0dd7b30abfe28f95c Mon Sep 17 00:00:00 2001 From: Daniel Friesel Date: Tue, 24 Sep 2019 12:17:43 +0200 Subject: convert BME680 driver to C++ class --- src/app/i2cdetect/main.cc | 39 ++- src/driver/bme680.cc | 714 ++++++++++++++++------------------------------ 2 files changed, 261 insertions(+), 492 deletions(-) (limited to 'src') diff --git a/src/app/i2cdetect/main.cc b/src/app/i2cdetect/main.cc index 2b30b47..acf5ef1 100644 --- a/src/app/i2cdetect/main.cc +++ b/src/app/i2cdetect/main.cc @@ -47,35 +47,32 @@ void loop(void) } #endif #ifdef DRIVER_BME680 - struct bme680_dev gas_sensor; - - gas_sensor.dev_id = BME680_I2C_ADDR_SECONDARY; - gas_sensor.intf = BME680_I2C_INTF; - gas_sensor.read = bme680_i2c_read; - gas_sensor.write = bme680_i2c_write; - gas_sensor.delay_ms = bme680_delay_ms; + bme680.intf = BME680_I2C_INTF; + bme680.read = bme680_i2c_read; + bme680.write = bme680_i2c_write; + bme680.delay_ms = bme680_delay_ms; /* amb_temp can be set to 25 prior to configuring the gas sensor * or by performing a few temperature readings without operating the gas sensor. */ - gas_sensor.amb_temp = 25; + bme680.amb_temp = 25; int8_t rslt = BME680_OK; - rslt = bme680_init(&gas_sensor); + rslt = bme680.init(); kout << "BME680 init " << rslt << endl; - gas_sensor.power_mode = BME680_FORCED_MODE; - gas_sensor.tph_sett.os_hum = BME680_OS_1X; - gas_sensor.tph_sett.os_pres = BME680_OS_16X; - gas_sensor.tph_sett.os_temp = BME680_OS_2X; - - gas_sensor.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS; - gas_sensor.gas_sett.heatr_dur = 150; - gas_sensor.gas_sett.heatr_temp = 300; - bme680_set_sensor_settings(BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL, &gas_sensor); - bme680_set_sensor_mode(&gas_sensor); - arch.delay_ms(500); + bme680.power_mode = BME680_FORCED_MODE; + bme680.tph_sett.os_hum = BME680_OS_1X; + bme680.tph_sett.os_pres = BME680_OS_16X; + bme680.tph_sett.os_temp = BME680_OS_2X; + + bme680.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS; + bme680.gas_sett.heatr_dur = 30; + bme680.gas_sett.heatr_temp = 300; + bme680.setSensorSettings(BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL); + bme680.setSensorMode(); + arch.delay_ms(200); struct bme680_field_data data; - bme680_get_sensor_data(&data, &gas_sensor); + bme680.getSensorData(&data); kout << "BME680 temperature " << (float)data.temperature / 100 << " degC" << endl; kout << "BME680 humidity " << (float)data.humidity / 1000 << " %" << endl; kout << "BME680 pressure " << (float)data.pressure / 100 << " hPa" << endl; diff --git a/src/driver/bme680.cc b/src/driver/bme680.cc index 9469c8f..52f94bf 100644 --- a/src/driver/bme680.cc +++ b/src/driver/bme680.cc @@ -49,256 +49,27 @@ @brief Sensor driver for BME680 sensor */ #include "driver/bme680.h" -/*! - * @brief This internal API is used to read the calibrated data from the sensor. - * - * This function is used to retrieve the calibration - * data from the image registers of the sensor. - * - * @note Registers 89h to A1h for calibration data 1 to 24 - * from bit 0 to 7 - * @note Registers E1h to F0h for calibration data 25 to 40 - * from bit 0 to 7 - * @param[in] dev :Structure instance of bme680_dev. - * - * @return Result of API execution status. - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t get_calib_data(struct bme680_dev *dev); - -/*! - * @brief This internal API is used to set the gas configuration of the sensor. - * - * @param[in] dev :Structure instance of bme680_dev. - * - * @return Result of API execution status. - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t set_gas_config(struct bme680_dev *dev); - -/*! - * @brief This internal API is used to get the gas configuration of the sensor. - * @note heatr_temp and heatr_dur values are currently register data - * and not the actual values set - * - * @param[in] dev :Structure instance of bme680_dev. - * - * @return Result of API execution status. - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t get_gas_config(struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the Heat duration value. - * - * @param[in] dur :Value of the duration to be shared. - * - * @return uint8_t threshold duration after calculation. - */ -static uint8_t calc_heater_dur(uint16_t dur); - -#ifndef BME680_FLOAT_POINT_COMPENSATION - -/*! - * @brief This internal API is used to calculate the temperature value. - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] temp_adc :Contains the temperature ADC value . - * - * @return uint32_t calculated temperature. - */ -static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the pressure value. - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] pres_adc :Contains the pressure ADC value . - * - * @return uint32_t calculated pressure. - */ -static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the humidity value. - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] hum_adc :Contains the humidity ADC value. - * - * @return uint32_t calculated humidity. - */ -static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the Gas Resistance value. - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] gas_res_adc :Contains the Gas Resistance ADC value. - * @param[in] gas_range :Contains the range of gas values. - * - * @return uint32_t calculated gas resistance. - */ -static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the Heat Resistance value. - * - * @param[in] dev : Structure instance of bme680_dev - * @param[in] temp : Contains the target temperature value. - * - * @return uint8_t calculated heater resistance. - */ -static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev); - -#else -/*! - * @brief This internal API is used to calculate the - * temperature value value in float format - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] temp_adc :Contains the temperature ADC value . - * - * @return Calculated temperature in float - */ -static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the - * pressure value value in float format - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] pres_adc :Contains the pressure ADC value . - * - * @return Calculated pressure in float. - */ -static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the - * humidity value value in float format - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] hum_adc :Contains the humidity ADC value. - * - * @return Calculated humidity in float. - */ -static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the - * gas resistance value value in float format - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] gas_res_adc :Contains the Gas Resistance ADC value. - * @param[in] gas_range :Contains the range of gas values. - * - * @return Calculated gas resistance in float. - */ -static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to calculate the - * heater resistance value in float format - * - * @param[in] temp : Contains the target temperature value. - * @param[in] dev : Structure instance of bme680_dev. - * - * @return Calculated heater resistance in float. - */ -static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev); - -#endif - -/*! - * @brief This internal API is used to calculate the field data of sensor. - * - * @param[out] data :Structure instance to hold the data - * @param[in] dev :Structure instance of bme680_dev. - * - * @return int8_t result of the field data from sensor. - */ -static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev); - -/*! - * @brief This internal API is used to set the memory page - * based on register address. - * - * The value of memory page - * value | Description - * --------|-------------- - * 0 | BME680_PAGE0_SPI - * 1 | BME680_PAGE1_SPI - * - * @param[in] dev :Structure instance of bme680_dev. - * @param[in] reg_addr :Contains the register address array. - * - * @return Result of API execution status - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev); - -/*! - * @brief This internal API is used to get the memory page based - * on register address. - * - * The value of memory page - * value | Description - * --------|-------------- - * 0 | BME680_PAGE0_SPI - * 1 | BME680_PAGE1_SPI - * - * @param[in] dev :Structure instance of bme680_dev. - * - * @return Result of API execution status - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t get_mem_page(struct bme680_dev *dev); - -/*! - * @brief This internal API is used to validate the device pointer for - * null conditions. - * - * @param[in] dev :Structure instance of bme680_dev. - * - * @return Result of API execution status - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t null_ptr_check(const struct bme680_dev *dev); - -/*! - * @brief This internal API is used to check the boundary - * conditions. - * - * @param[in] value :pointer to the value. - * @param[in] min :minimum value. - * @param[in] max :maximum value. - * @param[in] dev :Structure instance of bme680_dev. - * - * @return Result of API execution status - * @retval zero -> Success / +ve value -> Warning / -ve value -> Error - */ -static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev); /****************** Global Function Definitions *******************************/ /*! *@brief This API is the entry point. *It reads the chip-id and calibration data from the sensor. */ -int8_t bme680_init(struct bme680_dev *dev) +int8_t BME680::init() { int8_t rslt; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { /* Soft reset to restore it to default values*/ - rslt = bme680_soft_reset(dev); + rslt = softReset(); if (rslt == BME680_OK) { - rslt = bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev); + rslt = getRegs(BME680_CHIP_ID_ADDR, &chip_id, 1); if (rslt == BME680_OK) { - if (dev->chip_id == BME680_CHIP_ID) { + if (chip_id == BME680_CHIP_ID) { /* Get the Calibration data */ - rslt = get_calib_data(dev); + rslt = getCalibData(); } else { rslt = BME680_E_DEV_NOT_FOUND; } @@ -312,21 +83,21 @@ int8_t bme680_init(struct bme680_dev *dev) /*! * @brief This API reads the data from the given register address of the sensor. */ -int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev) +int8_t BME680::getRegs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { int8_t rslt; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - if (dev->intf == BME680_SPI_INTF) { + if (intf == BME680_SPI_INTF) { /* Set the memory page */ - rslt = set_mem_page(reg_addr, dev); + rslt = setMemPage(reg_addr); if (rslt == BME680_OK) reg_addr = reg_addr | BME680_SPI_RD_MSK; } - dev->com_rslt = dev->read(dev->dev_id, reg_addr, reg_data, len); - if (dev->com_rslt != 0) + com_rslt = read(dev_id, reg_addr, reg_data, len); + if (com_rslt != 0) rslt = BME680_E_COM_FAIL; } @@ -337,7 +108,7 @@ int8_t bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct * @brief This API writes the given data to the register address * of the sensor. */ -int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev) +int8_t BME680::setRegs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len) { int8_t rslt; /* Length of the temporary buffer is 2*(length of register)*/ @@ -345,14 +116,14 @@ int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t uint16_t index; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) { /* Interleave the 2 arrays */ for (index = 0; index < len; index++) { - if (dev->intf == BME680_SPI_INTF) { + if (intf == BME680_SPI_INTF) { /* Set the memory page */ - rslt = set_mem_page(reg_addr[index], dev); + rslt = setMemPage(reg_addr[index]); tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK; } else { tmp_buff[(2 * index)] = reg_addr[index]; @@ -361,8 +132,8 @@ int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t } /* Write the interleaved array */ if (rslt == BME680_OK) { - dev->com_rslt = dev->write(dev->dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1); - if (dev->com_rslt != 0) + com_rslt = write(dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1); + if (com_rslt != 0) rslt = BME680_E_COM_FAIL; } } else { @@ -376,7 +147,7 @@ int8_t bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t /*! * @brief This API performs the soft reset of the sensor. */ -int8_t bme680_soft_reset(struct bme680_dev *dev) +int8_t BME680::softReset() { int8_t rslt; uint8_t reg_addr = BME680_SOFT_RESET_ADDR; @@ -384,21 +155,21 @@ int8_t bme680_soft_reset(struct bme680_dev *dev) uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - if (dev->intf == BME680_SPI_INTF) - rslt = get_mem_page(dev); + if (intf == BME680_SPI_INTF) + rslt = getMemPage(); /* Reset the device */ if (rslt == BME680_OK) { - rslt = bme680_set_regs(®_addr, &soft_rst_cmd, 1, dev); + rslt = setRegs(®_addr, &soft_rst_cmd, 1); /* Wait for 5ms */ - dev->delay_ms(BME680_RESET_PERIOD); + delay_ms(BME680_RESET_PERIOD); if (rslt == BME680_OK) { /* After reset get the memory page */ - if (dev->intf == BME680_SPI_INTF) - rslt = get_mem_page(dev); + if (intf == BME680_SPI_INTF) + rslt = getMemPage(); } } } @@ -410,7 +181,7 @@ int8_t bme680_soft_reset(struct bme680_dev *dev) * @brief This API is used to set the oversampling, filter and T,P,H, gas selection * settings in the sensor. */ -int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev) +int8_t BME680::setSensorSettings(uint16_t desired_settings) { int8_t rslt; uint8_t reg_addr; @@ -418,28 +189,28 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * uint8_t count = 0; uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 }; uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 }; - uint8_t intended_power_mode = dev->power_mode; /* Save intended power mode */ + uint8_t intended_power_mode = power_mode; /* Save intended power mode */ /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (desired_settings & BME680_GAS_MEAS_SEL) - rslt = set_gas_config(dev); + rslt = setGasConfig(); - dev->power_mode = BME680_SLEEP_MODE; + power_mode = BME680_SLEEP_MODE; if (rslt == BME680_OK) - rslt = bme680_set_sensor_mode(dev); + rslt = getSensorMode(); /* Selecting the filter */ if (desired_settings & BME680_FILTER_SEL) { - rslt = boundary_check(&dev->tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127, dev); + rslt = boundaryCheck(&tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127); reg_addr = BME680_CONF_ODR_FILT_ADDR; if (rslt == BME680_OK) - rslt = bme680_get_regs(reg_addr, &data, 1, dev); + rslt = getRegs(reg_addr, &data, 1); if (desired_settings & BME680_FILTER_SEL) - data = BME680_SET_BITS(data, BME680_FILTER, dev->tph_sett.filter); + data = BME680_SET_BITS(data, BME680_FILTER, tph_sett.filter); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; @@ -448,13 +219,13 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * /* Selecting heater control for the sensor */ if (desired_settings & BME680_HCNTRL_SEL) { - rslt = boundary_check(&dev->gas_sett.heatr_ctrl, BME680_ENABLE_HEATER, - BME680_DISABLE_HEATER, dev); + rslt = boundaryCheck(&gas_sett.heatr_ctrl, BME680_ENABLE_HEATER, + BME680_DISABLE_HEATER); reg_addr = BME680_CONF_HEAT_CTRL_ADDR; if (rslt == BME680_OK) - rslt = bme680_get_regs(reg_addr, &data, 1, dev); - data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, dev->gas_sett.heatr_ctrl); + rslt = getRegs(reg_addr, &data, 1); + data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, gas_sett.heatr_ctrl); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; @@ -463,17 +234,17 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * /* Selecting heater T,P oversampling for the sensor */ if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) { - rslt = boundary_check(&dev->tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X, dev); + rslt = boundaryCheck(&tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X); reg_addr = BME680_CONF_T_P_MODE_ADDR; if (rslt == BME680_OK) - rslt = bme680_get_regs(reg_addr, &data, 1, dev); + rslt = getRegs(reg_addr, &data, 1); if (desired_settings & BME680_OST_SEL) - data = BME680_SET_BITS(data, BME680_OST, dev->tph_sett.os_temp); + data = BME680_SET_BITS(data, BME680_OST, tph_sett.os_temp); if (desired_settings & BME680_OSP_SEL) - data = BME680_SET_BITS(data, BME680_OSP, dev->tph_sett.os_pres); + data = BME680_SET_BITS(data, BME680_OSP, tph_sett.os_pres); reg_array[count] = reg_addr; data_array[count] = data; @@ -482,12 +253,12 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * /* Selecting humidity oversampling for the sensor */ if (desired_settings & BME680_OSH_SEL) { - rslt = boundary_check(&dev->tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X, dev); + rslt = boundaryCheck(&tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X); reg_addr = BME680_CONF_OS_H_ADDR; if (rslt == BME680_OK) - rslt = bme680_get_regs(reg_addr, &data, 1, dev); - data = BME680_SET_BITS_POS_0(data, BME680_OSH, dev->tph_sett.os_hum); + rslt = getRegs(reg_addr, &data, 1); + data = BME680_SET_BITS_POS_0(data, BME680_OSH, tph_sett.os_hum); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; @@ -496,24 +267,24 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * /* Selecting the runGas and NB conversion settings for the sensor */ if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) { - rslt = boundary_check(&dev->gas_sett.run_gas, BME680_RUN_GAS_DISABLE, - BME680_RUN_GAS_ENABLE, dev); + rslt = boundaryCheck(&gas_sett.run_gas, BME680_RUN_GAS_DISABLE, + BME680_RUN_GAS_ENABLE); if (rslt == BME680_OK) { /* Validate boundary conditions */ - rslt = boundary_check(&dev->gas_sett.nb_conv, BME680_NBCONV_MIN, - BME680_NBCONV_MAX, dev); + rslt = boundaryCheck(&gas_sett.nb_conv, BME680_NBCONV_MIN, + BME680_NBCONV_MAX); } reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR; if (rslt == BME680_OK) - rslt = bme680_get_regs(reg_addr, &data, 1, dev); + rslt = getRegs(reg_addr, &data, 1); if (desired_settings & BME680_RUN_GAS_SEL) - data = BME680_SET_BITS(data, BME680_RUN_GAS, dev->gas_sett.run_gas); + data = BME680_SET_BITS(data, BME680_RUN_GAS, gas_sett.run_gas); if (desired_settings & BME680_NBCONV_SEL) - data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, dev->gas_sett.nb_conv); + data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, gas_sett.nb_conv); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; @@ -521,10 +292,10 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * } if (rslt == BME680_OK) - rslt = bme680_set_regs(reg_array, data_array, count, dev); + rslt = setRegs(reg_array, data_array, count); /* Restore previous intended power mode */ - dev->power_mode = intended_power_mode; + power_mode = intended_power_mode; } return rslt; @@ -534,7 +305,7 @@ int8_t bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev * * @brief This API is used to get the oversampling, filter and T,P,H, gas selection * settings in the sensor. */ -int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev) +int8_t BME680::getSensorSettings(uint16_t desired_settings) { int8_t rslt; /* starting address of the register array for burst read*/ @@ -542,37 +313,37 @@ int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev * uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 }; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - rslt = bme680_get_regs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH, dev); + rslt = getRegs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH); if (rslt == BME680_OK) { if (desired_settings & BME680_GAS_MEAS_SEL) - rslt = get_gas_config(dev); + rslt = getGasConfig(); /* get the T,P,H ,Filter,ODR settings here */ if (desired_settings & BME680_FILTER_SEL) - dev->tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX], + tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX], BME680_FILTER); if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) { - dev->tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST); - dev->tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP); + tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST); + tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP); } if (desired_settings & BME680_OSH_SEL) - dev->tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX], + tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX], BME680_OSH); /* get the gas related settings */ if (desired_settings & BME680_HCNTRL_SEL) - dev->gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX], + gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX], BME680_HCTRL); if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) { - dev->gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX], + gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX], BME680_NBCONV); - dev->gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX], + gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX], BME680_RUN_GAS); } } @@ -586,7 +357,7 @@ int8_t bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev * /*! * @brief This API is used to set the power mode of the sensor. */ -int8_t bme680_set_sensor_mode(struct bme680_dev *dev) +int8_t BME680::setSensorMode() { int8_t rslt; uint8_t tmp_pow_mode; @@ -594,28 +365,28 @@ int8_t bme680_set_sensor_mode(struct bme680_dev *dev) uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { /* Call repeatedly until in sleep */ do { - rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1, dev); + rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1); if (rslt == BME680_OK) { /* Put to sleep before changing mode */ pow_mode = (tmp_pow_mode & BME680_MODE_MSK); if (pow_mode != BME680_SLEEP_MODE) { tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */ - rslt = bme680_set_regs(®_addr, &tmp_pow_mode, 1, dev); - dev->delay_ms(BME680_POLL_PERIOD_MS); + rslt = setRegs(®_addr, &tmp_pow_mode, 1); + delay_ms(BME680_POLL_PERIOD_MS); } } } while (pow_mode != BME680_SLEEP_MODE); /* Already in sleep */ - if (dev->power_mode != BME680_SLEEP_MODE) { - tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (dev->power_mode & BME680_MODE_MSK); + if (power_mode != BME680_SLEEP_MODE) { + tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (power_mode & BME680_MODE_MSK); if (rslt == BME680_OK) - rslt = bme680_set_regs(®_addr, &tmp_pow_mode, 1, dev); + rslt = setRegs(®_addr, &tmp_pow_mode, 1); } } @@ -625,17 +396,17 @@ int8_t bme680_set_sensor_mode(struct bme680_dev *dev) /*! * @brief This API is used to get the power mode of the sensor. */ -int8_t bme680_get_sensor_mode(struct bme680_dev *dev) +int8_t BME680::getSensorMode() { int8_t rslt; uint8_t mode; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &mode, 1, dev); + rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &mode, 1); /* Masking the other register bit info*/ - dev->power_mode = mode & BME680_MODE_MSK; + power_mode = mode & BME680_MODE_MSK; } return rslt; @@ -644,15 +415,15 @@ int8_t bme680_get_sensor_mode(struct bme680_dev *dev) /*! * @brief This API is used to set the profile duration of the sensor. */ -void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev) +void BME680::setProfileDur(uint16_t duration) { uint32_t tph_dur; /* Calculate in us */ uint32_t meas_cycles; uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16}; - meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp]; - meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres]; - meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum]; + meas_cycles = os_to_meas_cycles[tph_sett.os_temp]; + meas_cycles += os_to_meas_cycles[tph_sett.os_pres]; + meas_cycles += os_to_meas_cycles[tph_sett.os_hum]; /* TPH measurement duration */ tph_dur = meas_cycles * UINT32_C(1963); @@ -663,21 +434,21 @@ void bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev) tph_dur += UINT32_C(1); /* Wake up duration of 1ms */ /* The remaining time should be used for heating */ - dev->gas_sett.heatr_dur = duration - (uint16_t) tph_dur; + gas_sett.heatr_dur = duration - (uint16_t) tph_dur; } /*! * @brief This API is used to get the profile duration of the sensor. */ -void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev) +void BME680::getProfileDur(uint16_t *duration) { uint32_t tph_dur; /* Calculate in us */ uint32_t meas_cycles; uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16}; - meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp]; - meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres]; - meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum]; + meas_cycles = os_to_meas_cycles[tph_sett.os_temp]; + meas_cycles += os_to_meas_cycles[tph_sett.os_pres]; + meas_cycles += os_to_meas_cycles[tph_sett.os_hum]; /* TPH measurement duration */ tph_dur = meas_cycles * UINT32_C(1963); @@ -691,9 +462,9 @@ void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev) *duration = (uint16_t) tph_dur; /* Get the gas duration only when the run gas is enabled */ - if (dev->gas_sett.run_gas) { + if (gas_sett.run_gas) { /* The remaining time should be used for heating */ - *duration += dev->gas_sett.heatr_dur; + *duration += gas_sett.heatr_dur; } } @@ -702,20 +473,20 @@ void bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev) * from the sensor, compensates the data and store it in the bme680_data * structure instance passed by the user. */ -int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev) +int8_t BME680::getSensorData(struct bme680_field_data *data) { int8_t rslt; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { /* Reading the sensor data in forced mode only */ - rslt = read_field_data(data, dev); + rslt = readFieldData(data); if (rslt == BME680_OK) { if (data->status & BME680_NEW_DATA_MSK) - dev->new_fields = 1; + new_fields = 1; else - dev->new_fields = 0; + new_fields = 0; } } @@ -725,77 +496,77 @@ int8_t bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev /*! * @brief This internal API is used to read the calibrated data from the sensor. */ -static int8_t get_calib_data(struct bme680_dev *dev) +int8_t BME680::getCalibData() { int8_t rslt; uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 }; uint8_t temp_var = 0; /* Temporary variable */ /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - rslt = bme680_get_regs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN, dev); + rslt = getRegs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN); /* Append the second half in the same array */ if (rslt == BME680_OK) - rslt = bme680_get_regs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN] - , BME680_COEFF_ADDR2_LEN, dev); + rslt = getRegs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN] + , BME680_COEFF_ADDR2_LEN); /* Temperature related coefficients */ - dev->calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG], + calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG], coeff_array[BME680_T1_LSB_REG])); - dev->calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG], + calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG], coeff_array[BME680_T2_LSB_REG])); - dev->calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]); + calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]); /* Pressure related coefficients */ - dev->calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG], + calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG], coeff_array[BME680_P1_LSB_REG])); - dev->calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG], + calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG], coeff_array[BME680_P2_LSB_REG])); - dev->calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG]; - dev->calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG], + calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG]; + calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG], coeff_array[BME680_P4_LSB_REG])); - dev->calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG], + calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG], coeff_array[BME680_P5_LSB_REG])); - dev->calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]); - dev->calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]); - dev->calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG], + calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]); + calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]); + calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG], coeff_array[BME680_P8_LSB_REG])); - dev->calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG], + calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG], coeff_array[BME680_P9_LSB_REG])); - dev->calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]); + calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]); /* Humidity related coefficients */ - dev->calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) + calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) | (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK)); - dev->calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) + calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) | ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL)); - dev->calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG]; - dev->calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG]; - dev->calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG]; - dev->calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG]; - dev->calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG]; + calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG]; + calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG]; + calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG]; + calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG]; + calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG]; /* Gas heater related coefficients */ - dev->calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG]; - dev->calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG], + calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG]; + calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG], coeff_array[BME680_GH2_LSB_REG])); - dev->calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG]; + calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG]; /* Other coefficients */ if (rslt == BME680_OK) { - rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1, dev); + rslt = getRegs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1); - dev->calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16); + calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16); if (rslt == BME680_OK) { - rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1, dev); + rslt = getRegs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1); - dev->calib.res_heat_val = (int8_t) temp_var; + calib.res_heat_val = (int8_t) temp_var; if (rslt == BME680_OK) - rslt = bme680_get_regs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1, dev); + rslt = getRegs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1); } } - dev->calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16; + calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16; } return rslt; @@ -804,28 +575,28 @@ static int8_t get_calib_data(struct bme680_dev *dev) /*! * @brief This internal API is used to set the gas configuration of the sensor. */ -static int8_t set_gas_config(struct bme680_dev *dev) +int8_t BME680::setGasConfig() { int8_t rslt; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { uint8_t reg_addr[2] = {0}; uint8_t reg_data[2] = {0}; - if (dev->power_mode == BME680_FORCED_MODE) { + if (power_mode == BME680_FORCED_MODE) { reg_addr[0] = BME680_RES_HEAT0_ADDR; - reg_data[0] = calc_heater_res(dev->gas_sett.heatr_temp, dev); + reg_data[0] = calcHeaterRes(gas_sett.heatr_temp); reg_addr[1] = BME680_GAS_WAIT0_ADDR; - reg_data[1] = calc_heater_dur(dev->gas_sett.heatr_dur); - dev->gas_sett.nb_conv = 0; + reg_data[1] = calcHeaterDur(gas_sett.heatr_dur); + gas_sett.nb_conv = 0; } else { rslt = BME680_W_DEFINE_PWR_MODE; } if (rslt == BME680_OK) - rslt = bme680_set_regs(reg_addr, reg_data, 2, dev); + rslt = setRegs(reg_addr, reg_data, 2); } return rslt; @@ -836,7 +607,7 @@ static int8_t set_gas_config(struct bme680_dev *dev) * @note heatr_temp and heatr_dur values are currently register data * and not the actual values set */ -static int8_t get_gas_config(struct bme680_dev *dev) +int8_t BME680::getGasConfig() { int8_t rslt; /* starting address of the register array for burst read*/ @@ -845,21 +616,21 @@ static int8_t get_gas_config(struct bme680_dev *dev) uint8_t reg_data = 0; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - if (BME680_SPI_INTF == dev->intf) { + if (BME680_SPI_INTF == intf) { /* Memory page switch the SPI address*/ - rslt = set_mem_page(reg_addr1, dev); + rslt = setMemPage(reg_addr1); } if (rslt == BME680_OK) { - rslt = bme680_get_regs(reg_addr1, ®_data, 1, dev); + rslt = getRegs(reg_addr1, ®_data, 1); if (rslt == BME680_OK) { - dev->gas_sett.heatr_temp = reg_data; - rslt = bme680_get_regs(reg_addr2, ®_data, 1, dev); + gas_sett.heatr_temp = reg_data; + rslt = getRegs(reg_addr2, ®_data, 1); if (rslt == BME680_OK) { /* Heating duration register value */ - dev->gas_sett.heatr_dur = reg_data; + gas_sett.heatr_dur = reg_data; } } } @@ -873,19 +644,19 @@ static int8_t get_gas_config(struct bme680_dev *dev) /*! * @brief This internal API is used to calculate the temperature value. */ -static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev) +int16_t BME680::calcTemperature(uint32_t temp_adc) { int64_t var1; int64_t var2; int64_t var3; int16_t calc_temp; - var1 = ((int32_t) temp_adc >> 3) - ((int32_t) dev->calib.par_t1 << 1); - var2 = (var1 * (int32_t) dev->calib.par_t2) >> 11; + var1 = ((int32_t) temp_adc >> 3) - ((int32_t) calib.par_t1 << 1); + var2 = (var1 * (int32_t) calib.par_t2) >> 11; var3 = ((var1 >> 1) * (var1 >> 1)) >> 12; - var3 = ((var3) * ((int32_t) dev->calib.par_t3 << 4)) >> 14; - dev->calib.t_fine = (int32_t) (var2 + var3); - calc_temp = (int16_t) (((dev->calib.t_fine * 5) + 128) >> 8); + var3 = ((var3) * ((int32_t) calib.par_t3 << 4)) >> 14; + calib.t_fine = (int32_t) (var2 + var3); + calc_temp = (int16_t) (((calib.t_fine * 5) + 128) >> 8); return calc_temp; } @@ -893,39 +664,39 @@ static int16_t calc_temperature(uint32_t temp_adc, struct bme680_dev *dev) /*! * @brief This internal API is used to calculate the pressure value. */ -static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev) +uint32_t BME680::calcPressure(uint32_t pres_adc) { int32_t var1; int32_t var2; int32_t var3; int32_t pressure_comp; - var1 = (((int32_t)dev->calib.t_fine) >> 1) - 64000; + var1 = (((int32_t)calib.t_fine) >> 1) - 64000; var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * - (int32_t)dev->calib.par_p6) >> 2; - var2 = var2 + ((var1 * (int32_t)dev->calib.par_p5) << 1); - var2 = (var2 >> 2) + ((int32_t)dev->calib.par_p4 << 16); + (int32_t)calib.par_p6) >> 2; + var2 = var2 + ((var1 * (int32_t)calib.par_p5) << 1); + var2 = (var2 >> 2) + ((int32_t)calib.par_p4 << 16); var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) * - ((int32_t)dev->calib.par_p3 << 5)) >> 3) + - (((int32_t)dev->calib.par_p2 * var1) >> 1); + ((int32_t)calib.par_p3 << 5)) >> 3) + + (((int32_t)calib.par_p2 * var1) >> 1); var1 = var1 >> 18; - var1 = ((32768 + var1) * (int32_t)dev->calib.par_p1) >> 15; + var1 = ((32768 + var1) * (int32_t)calib.par_p1) >> 15; pressure_comp = 1048576 - pres_adc; pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125)); if (pressure_comp >= BME680_MAX_OVERFLOW_VAL) pressure_comp = ((pressure_comp / var1) << 1); else pressure_comp = ((pressure_comp << 1) / var1); - var1 = ((int32_t)dev->calib.par_p9 * (int32_t)(((pressure_comp >> 3) * + var1 = ((int32_t)calib.par_p9 * (int32_t)(((pressure_comp >> 3) * (pressure_comp >> 3)) >> 13)) >> 12; var2 = ((int32_t)(pressure_comp >> 2) * - (int32_t)dev->calib.par_p8) >> 13; + (int32_t)calib.par_p8) >> 13; var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * - (int32_t)dev->calib.par_p10) >> 17; + (int32_t)calib.par_p10) >> 17; pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 + - ((int32_t)dev->calib.par_p7 << 7)) >> 4); + ((int32_t)calib.par_p7 << 7)) >> 4); return (uint32_t)pressure_comp; @@ -934,7 +705,7 @@ static uint32_t calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev) /*! * @brief This internal API is used to calculate the humidity value. */ -static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) +uint32_t BME680::calcHumidity(uint16_t hum_adc) { int32_t var1; int32_t var2; @@ -945,16 +716,16 @@ static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) int32_t temp_scaled; int32_t calc_hum; - temp_scaled = (((int32_t) dev->calib.t_fine * 5) + 128) >> 8; - var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) dev->calib.par_h1 * 16))) - - (((temp_scaled * (int32_t) dev->calib.par_h3) / ((int32_t) 100)) >> 1); - var2 = ((int32_t) dev->calib.par_h2 - * (((temp_scaled * (int32_t) dev->calib.par_h4) / ((int32_t) 100)) - + (((temp_scaled * ((temp_scaled * (int32_t) dev->calib.par_h5) / ((int32_t) 100))) >> 6) + temp_scaled = (((int32_t) calib.t_fine * 5) + 128) >> 8; + var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) calib.par_h1 * 16))) + - (((temp_scaled * (int32_t) calib.par_h3) / ((int32_t) 100)) >> 1); + var2 = ((int32_t) calib.par_h2 + * (((temp_scaled * (int32_t) calib.par_h4) / ((int32_t) 100)) + + (((temp_scaled * ((temp_scaled * (int32_t) calib.par_h5) / ((int32_t) 100))) >> 6) / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10; var3 = var1 * var2; - var4 = (int32_t) dev->calib.par_h6 << 7; - var4 = ((var4) + ((temp_scaled * (int32_t) dev->calib.par_h7) / ((int32_t) 100))) >> 4; + var4 = (int32_t) calib.par_h6 << 7; + var4 = ((var4) + ((temp_scaled * (int32_t) calib.par_h7) / ((int32_t) 100))) >> 4; var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; var6 = (var4 * var5) >> 1; calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12; @@ -970,7 +741,7 @@ static uint32_t calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) /*! * @brief This internal API is used to calculate the Gas Resistance value. */ -static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev) +uint32_t BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range) { int64_t var1; uint64_t var2; @@ -987,7 +758,7 @@ static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, con UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000), UINT32_C(250000), UINT32_C(125000) }; - var1 = (int64_t) ((1340 + (5 * (int64_t) dev->calib.range_sw_err)) * + var1 = (int64_t) ((1340 + (5 * (int64_t) calib.range_sw_err)) * ((int64_t) lookupTable1[gas_range])) >> 16; var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1); var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9); @@ -999,7 +770,7 @@ static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, con /*! * @brief This internal API is used to calculate the Heat Resistance value. */ -static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev) +uint8_t BME680::calcHeaterRes(uint16_t temp) { uint8_t heatr_res; int32_t var1; @@ -1012,11 +783,11 @@ static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev) if (temp > 400) /* Cap temperature */ temp = 400; - var1 = (((int32_t) dev->amb_temp * dev->calib.par_gh3) / 1000) * 256; - var2 = (dev->calib.par_gh1 + 784) * (((((dev->calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10); + var1 = (((int32_t) amb_temp * calib.par_gh3) / 1000) * 256; + var2 = (calib.par_gh1 + 784) * (((((calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10); var3 = var1 + (var2 / 2); - var4 = (var3 / (dev->calib.res_heat_range + 4)); - var5 = (131 * dev->calib.res_heat_val) + 65536; + var4 = (var3 / (calib.res_heat_range + 4)); + var5 = (131 * calib.res_heat_val) + 65536; heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34); heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100); @@ -1030,26 +801,26 @@ static uint8_t calc_heater_res(uint16_t temp, const struct bme680_dev *dev) * @brief This internal API is used to calculate the * temperature value in float format */ -static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev) +float BME680::calcTemperature(uint32_t temp_adc) { float var1 = 0; float var2 = 0; float calc_temp = 0; /* calculate var1 data */ - var1 = ((((float)temp_adc / 16384.0f) - ((float)dev->calib.par_t1 / 1024.0f)) - * ((float)dev->calib.par_t2)); + var1 = ((((float)temp_adc / 16384.0f) - ((float)calib.par_t1 / 1024.0f)) + * ((float)calib.par_t2)); /* calculate var2 data */ - var2 = (((((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f)) * - (((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f))) * - ((float)dev->calib.par_t3 * 16.0f)); + var2 = (((((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f)) * + (((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f))) * + ((float)calib.par_t3 * 16.0f)); /* t_fine value*/ - dev->calib.t_fine = (var1 + var2); + calib.t_fine = (var1 + var2); /* compensated temperature data*/ - calc_temp = ((dev->calib.t_fine) / 5120.0f); + calc_temp = ((calib.t_fine) / 5120.0f); return calc_temp; } @@ -1058,30 +829,30 @@ static float calc_temperature(uint32_t temp_adc, struct bme680_dev *dev) * @brief This internal API is used to calculate the * pressure value in float format */ -static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev) +float BME680::calcPressure(uint32_t pres_adc) { float var1 = 0; float var2 = 0; float var3 = 0; float calc_pres = 0; - var1 = (((float)dev->calib.t_fine / 2.0f) - 64000.0f); - var2 = var1 * var1 * (((float)dev->calib.par_p6) / (131072.0f)); - var2 = var2 + (var1 * ((float)dev->calib.par_p5) * 2.0f); - var2 = (var2 / 4.0f) + (((float)dev->calib.par_p4) * 65536.0f); - var1 = (((((float)dev->calib.par_p3 * var1 * var1) / 16384.0f) - + ((float)dev->calib.par_p2 * var1)) / 524288.0f); - var1 = ((1.0f + (var1 / 32768.0f)) * ((float)dev->calib.par_p1)); + var1 = (((float)calib.t_fine / 2.0f) - 64000.0f); + var2 = var1 * var1 * (((float)calib.par_p6) / (131072.0f)); + var2 = var2 + (var1 * ((float)calib.par_p5) * 2.0f); + var2 = (var2 / 4.0f) + (((float)calib.par_p4) * 65536.0f); + var1 = (((((float)calib.par_p3 * var1 * var1) / 16384.0f) + + ((float)calib.par_p2 * var1)) / 524288.0f); + var1 = ((1.0f + (var1 / 32768.0f)) * ((float)calib.par_p1)); calc_pres = (1048576.0f - ((float)pres_adc)); /* Avoid exception caused by division by zero */ if ((int)var1 != 0) { calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1); - var1 = (((float)dev->calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f; - var2 = calc_pres * (((float)dev->calib.par_p8) / 32768.0f); + var1 = (((float)calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f; + var2 = calc_pres * (((float)calib.par_p8) / 32768.0f); var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f) - * (dev->calib.par_p10 / 131072.0f)); - calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)dev->calib.par_p7 * 128.0f)) / 16.0f); + * (calib.par_p10 / 131072.0f)); + calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)calib.par_p7 * 128.0f)) / 16.0f); } else { calc_pres = 0; } @@ -1093,7 +864,7 @@ static float calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev) * @brief This internal API is used to calculate the * humidity value in float format */ -static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) +float BME680::calcHumidity(uint16_t hum_adc) { float calc_hum = 0; float var1 = 0; @@ -1103,17 +874,17 @@ static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) float temp_comp; /* compensated temperature data*/ - temp_comp = ((dev->calib.t_fine) / 5120.0f); + temp_comp = ((calib.t_fine) / 5120.0f); - var1 = (float)((float)hum_adc) - (((float)dev->calib.par_h1 * 16.0f) + (((float)dev->calib.par_h3 / 2.0f) + var1 = (float)((float)hum_adc) - (((float)calib.par_h1 * 16.0f) + (((float)calib.par_h3 / 2.0f) * temp_comp)); - var2 = var1 * ((float)(((float) dev->calib.par_h2 / 262144.0f) * (1.0f + (((float)dev->calib.par_h4 / 16384.0f) - * temp_comp) + (((float)dev->calib.par_h5 / 1048576.0f) * temp_comp * temp_comp)))); + var2 = var1 * ((float)(((float) calib.par_h2 / 262144.0f) * (1.0f + (((float)calib.par_h4 / 16384.0f) + * temp_comp) + (((float)calib.par_h5 / 1048576.0f) * temp_comp * temp_comp)))); - var3 = (float) dev->calib.par_h6 / 16384.0f; + var3 = (float) calib.par_h6 / 16384.0f; - var4 = (float) dev->calib.par_h7 / 2097152.0f; + var4 = (float) calib.par_h7 / 2097152.0f; calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2); @@ -1129,7 +900,7 @@ static float calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev) * @brief This internal API is used to calculate the * gas resistance value in float format */ -static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev) +float BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range) { float calc_gas_res; float var1 = 0; @@ -1143,7 +914,7 @@ static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; - var1 = (1340.0f + (5.0f * dev->calib.range_sw_err)); + var1 = (1340.0f + (5.0f * calib.range_sw_err)); var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f); var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f); @@ -1157,7 +928,7 @@ static float calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const * @brief This internal API is used to calculate the * heater resistance value in float format */ -static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev) +float BME680::calcHeaterRes(uint16_t temp) { float var1 = 0; float var2 = 0; @@ -1169,13 +940,13 @@ static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev) if (temp > 400) /* Cap temperature */ temp = 400; - var1 = (((float)dev->calib.par_gh1 / (16.0f)) + 49.0f); - var2 = ((((float)dev->calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f); - var3 = ((float)dev->calib.par_gh3 / (1024.0f)); + var1 = (((float)calib.par_gh1 / (16.0f)) + 49.0f); + var2 = ((((float)calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f); + var3 = ((float)calib.par_gh3 / (1024.0f)); var4 = (var1 * (1.0f + (var2 * (float)temp))); - var5 = (var4 + (var3 * (float)dev->amb_temp)); - res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)dev->calib.res_heat_range)) * - (1/(1 + ((float) dev->calib.res_heat_val * 0.002f)))) - 25)); + var5 = (var4 + (var3 * (float)amb_temp)); + res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)calib.res_heat_range)) * + (1/(1 + ((float) calib.res_heat_val * 0.002f)))) - 25)); return res_heat; } @@ -1185,7 +956,7 @@ static float calc_heater_res(uint16_t temp, const struct bme680_dev *dev) /*! * @brief This internal API is used to calculate the Heat duration value. */ -static uint8_t calc_heater_dur(uint16_t dur) +uint8_t BME680::calcHeaterDur(uint16_t dur) { uint8_t factor = 0; uint8_t durval; @@ -1206,7 +977,7 @@ static uint8_t calc_heater_dur(uint16_t dur) /*! * @brief This internal API is used to calculate the field data of sensor. */ -static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev *dev) +int8_t BME680::readFieldData(struct bme680_field_data *data) { int8_t rslt; uint8_t buff[BME680_FIELD_LENGTH] = { 0 }; @@ -1218,11 +989,10 @@ static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev uint8_t tries = 10; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); do { if (rslt == BME680_OK) { - rslt = bme680_get_regs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH, - dev); + rslt = getRegs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH); data->status = buff[0] & BME680_NEW_DATA_MSK; data->gas_index = buff[0] & BME680_GAS_INDEX_MSK; @@ -1241,14 +1011,14 @@ static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev data->status |= buff[14] & BME680_HEAT_STAB_MSK; if (data->status & BME680_NEW_DATA_MSK) { - data->temperature = calc_temperature(adc_temp, dev); - data->pressure = calc_pressure(adc_pres, dev); - data->humidity = calc_humidity(adc_hum, dev); - data->gas_resistance = calc_gas_resistance(adc_gas_res, gas_range, dev); + data->temperature = calcTemperature(adc_temp); + data->pressure = calcPressure(adc_pres); + data->humidity = calcHumidity(adc_hum); + data->gas_resistance = calcGasResistance(adc_gas_res, gas_range); break; } /* Delay to poll the data */ - dev->delay_ms(BME680_POLL_PERIOD_MS); + delay_ms(BME680_POLL_PERIOD_MS); } tries--; } while (tries); @@ -1262,34 +1032,34 @@ static int8_t read_field_data(struct bme680_field_data *data, struct bme680_dev /*! * @brief This internal API is used to set the memory page based on register address. */ -static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev) +int8_t BME680::setMemPage(uint8_t reg_addr) { int8_t rslt; uint8_t reg; uint8_t mem_page; /* Check for null pointers in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (reg_addr > 0x7f) mem_page = BME680_MEM_PAGE1; else mem_page = BME680_MEM_PAGE0; - if (mem_page != dev->mem_page) { - dev->mem_page = mem_page; + if (mem_page != mem_page) { + mem_page = mem_page; - dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); - if (dev->com_rslt != 0) + com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); + if (com_rslt != 0) rslt = BME680_E_COM_FAIL; if (rslt == BME680_OK) { reg = reg & (~BME680_MEM_PAGE_MSK); - reg = reg | (dev->mem_page & BME680_MEM_PAGE_MSK); + reg = reg | (mem_page & BME680_MEM_PAGE_MSK); - dev->com_rslt = dev->write(dev->dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK, + com_rslt = write(dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK, ®, 1); - if (dev->com_rslt != 0) + if (com_rslt != 0) rslt = BME680_E_COM_FAIL; } } @@ -1301,19 +1071,19 @@ static int8_t set_mem_page(uint8_t reg_addr, struct bme680_dev *dev) /*! * @brief This internal API is used to get the memory page based on register address. */ -static int8_t get_mem_page(struct bme680_dev *dev) +int8_t BME680::getMemPage() { int8_t rslt; uint8_t reg; /* Check for null pointer in the device structure*/ - rslt = null_ptr_check(dev); + rslt = nullPtrCheck(); if (rslt == BME680_OK) { - dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); - if (dev->com_rslt != 0) + com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); + if (com_rslt != 0) rslt = BME680_E_COM_FAIL; else - dev->mem_page = reg & BME680_MEM_PAGE_MSK; + mem_page = reg & BME680_MEM_PAGE_MSK; } return rslt; @@ -1323,7 +1093,7 @@ static int8_t get_mem_page(struct bme680_dev *dev) * @brief This internal API is used to validate the boundary * conditions. */ -static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev) +int8_t BME680::boundaryCheck(uint8_t *value, uint8_t min, uint8_t max) { int8_t rslt = BME680_OK; @@ -1332,13 +1102,13 @@ static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bm if (*value < min) { /* Auto correct the invalid value to minimum value */ *value = min; - dev->info_msg |= BME680_I_MIN_CORRECTION; + info_msg |= BME680_I_MIN_CORRECTION; } /* Check if value is above maximum value */ if (*value > max) { /* Auto correct the invalid value to maximum value */ *value = max; - dev->info_msg |= BME680_I_MAX_CORRECTION; + info_msg |= BME680_I_MAX_CORRECTION; } } else { rslt = BME680_E_NULL_PTR; @@ -1351,11 +1121,11 @@ static int8_t boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bm * @brief This internal API is used to validate the device structure pointer for * null conditions. */ -static int8_t null_ptr_check(const struct bme680_dev *dev) +int8_t BME680::nullPtrCheck() { int8_t rslt; - if ((dev == NULL) || (dev->read == NULL) || (dev->write == NULL) || (dev->delay_ms == NULL)) { + if ((read == NULL) || (write == NULL) || (delay_ms == NULL)) { /* Device structure pointer is not valid */ rslt = BME680_E_NULL_PTR; } else { @@ -1365,3 +1135,5 @@ static int8_t null_ptr_check(const struct bme680_dev *dev) return rslt; } + +BME680 bme680(BME680_I2C_ADDR_SECONDARY); \ No newline at end of file -- cgit v1.2.3