#pragma once #include // assert #include // isfinite #include // uint8_t #include // function #include // string #include // move #include #include #include #include #include #include #include namespace nlohmann { namespace detail { //////////// // parser // //////////// /*! @brief syntax analysis This class implements a recursive decent parser. */ template class parser { using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using lexer_t = lexer; using token_type = typename lexer_t::token_type; public: enum class parse_event_t : uint8_t { /// the parser read `{` and started to process a JSON object object_start, /// the parser read `}` and finished processing a JSON object object_end, /// the parser read `[` and started to process a JSON array array_start, /// the parser read `]` and finished processing a JSON array array_end, /// the parser read a key of a value in an object key, /// the parser finished reading a JSON value value }; using parser_callback_t = std::function; /// a parser reading from an input adapter explicit parser(detail::input_adapter_t&& adapter, const parser_callback_t cb = nullptr, const bool allow_exceptions_ = true) : callback(cb), m_lexer(std::move(adapter)), allow_exceptions(allow_exceptions_) { // read first token get_token(); } /*! @brief public parser interface @param[in] strict whether to expect the last token to be EOF @param[in,out] result parsed JSON value @throw parse_error.101 in case of an unexpected token @throw parse_error.102 if to_unicode fails or surrogate error @throw parse_error.103 if to_unicode fails */ void parse(const bool strict, BasicJsonType& result) { if (callback) { json_sax_dom_callback_parser sdp(result, callback, allow_exceptions); sax_parse_internal(&sdp); result.assert_invariant(); // in strict mode, input must be completely read if (strict and (get_token() != token_type::end_of_input)) { sdp.parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input))); } // in case of an error, return discarded value if (sdp.is_errored()) { result = value_t::discarded; return; } // set top-level value to null if it was discarded by the callback // function if (result.is_discarded()) { result = nullptr; } } else { json_sax_dom_parser sdp(result, allow_exceptions); sax_parse_internal(&sdp); result.assert_invariant(); // in strict mode, input must be completely read if (strict and (get_token() != token_type::end_of_input)) { sdp.parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input))); } // in case of an error, return discarded value if (sdp.is_errored()) { result = value_t::discarded; return; } } } /*! @brief public accept interface @param[in] strict whether to expect the last token to be EOF @return whether the input is a proper JSON text */ bool accept(const bool strict = true) { json_sax_acceptor sax_acceptor; return sax_parse(&sax_acceptor, strict); } template bool sax_parse(SAX* sax, const bool strict = true) { (void)detail::is_sax_static_asserts {}; const bool result = sax_parse_internal(sax); // strict mode: next byte must be EOF if (result and strict and (get_token() != token_type::end_of_input)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input))); } return result; } private: template bool sax_parse_internal(SAX* sax) { // stack to remember the hieararchy of structured values we are parsing // true = array; false = object std::vector states; // value to avoid a goto (see comment where set to true) bool skip_to_state_evaluation = false; while (true) { if (not skip_to_state_evaluation) { // invariant: get_token() was called before each iteration switch (last_token) { case token_type::begin_object: { if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1)))) { return false; } // closing } -> we are done if (get_token() == token_type::end_object) { if (JSON_UNLIKELY(not sax->end_object())) { return false; } break; } // parse key if (JSON_UNLIKELY(last_token != token_type::value_string)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string))); } else { if (JSON_UNLIKELY(not sax->key(m_lexer.get_string()))) { return false; } } // parse separator (:) if (JSON_UNLIKELY(get_token() != token_type::name_separator)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator))); } // remember we are now inside an object states.push_back(false); // parse values get_token(); continue; } case token_type::begin_array: { if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1)))) { return false; } // closing ] -> we are done if (get_token() == token_type::end_array) { if (JSON_UNLIKELY(not sax->end_array())) { return false; } break; } // remember we are now inside an array states.push_back(true); // parse values (no need to call get_token) continue; } case token_type::value_float: { const auto res = m_lexer.get_number_float(); if (JSON_UNLIKELY(not std::isfinite(res))) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), out_of_range::create(406, "number overflow parsing '" + m_lexer.get_token_string() + "'")); } else { if (JSON_UNLIKELY(not sax->number_float(res, m_lexer.get_string()))) { return false; } break; } } case token_type::literal_false: { if (JSON_UNLIKELY(not sax->boolean(false))) { return false; } break; } case token_type::literal_null: { if (JSON_UNLIKELY(not sax->null())) { return false; } break; } case token_type::literal_true: { if (JSON_UNLIKELY(not sax->boolean(true))) { return false; } break; } case token_type::value_integer: { if (JSON_UNLIKELY(not sax->number_integer(m_lexer.get_number_integer()))) { return false; } break; } case token_type::value_string: { if (JSON_UNLIKELY(not sax->string(m_lexer.get_string()))) { return false; } break; } case token_type::value_unsigned: { if (JSON_UNLIKELY(not sax->number_unsigned(m_lexer.get_number_unsigned()))) { return false; } break; } case token_type::parse_error: { // using "uninitialized" to avoid "expected" message return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized))); } default: // the last token was unexpected { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value))); } } } else { skip_to_state_evaluation = false; } // we reached this line after we successfully parsed a value if (states.empty()) { // empty stack: we reached the end of the hieararchy: done return true; } else { if (states.back()) // array { // comma -> next value if (get_token() == token_type::value_separator) { // parse a new value get_token(); continue; } // closing ] if (JSON_LIKELY(last_token == token_type::end_array)) { if (JSON_UNLIKELY(not sax->end_array())) { return false; } // We are done with this array. Before we can parse a // new value, we need to evaluate the new state first. // By setting skip_to_state_evaluation to false, we // are effectively jumping to the beginning of this if. assert(not states.empty()); states.pop_back(); skip_to_state_evaluation = true; continue; } else { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array))); } } else // object { // comma -> next value if (get_token() == token_type::value_separator) { // parse key if (JSON_UNLIKELY(get_token() != token_type::value_string)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string))); } else { if (JSON_UNLIKELY(not sax->key(m_lexer.get_string()))) { return false; } } // parse separator (:) if (JSON_UNLIKELY(get_token() != token_type::name_separator)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator))); } // parse values get_token(); continue; } // closing } if (JSON_LIKELY(last_token == token_type::end_object)) { if (JSON_UNLIKELY(not sax->end_object())) { return false; } // We are done with this object. Before we can parse a // new value, we need to evaluate the new state first. // By setting skip_to_state_evaluation to false, we // are effectively jumping to the beginning of this if. assert(not states.empty()); states.pop_back(); skip_to_state_evaluation = true; continue; } else { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object))); } } } } } /// get next token from lexer token_type get_token() { return (last_token = m_lexer.scan()); } std::string exception_message(const token_type expected) { std::string error_msg = "syntax error - "; if (last_token == token_type::parse_error) { error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" + m_lexer.get_token_string() + "'"; } else { error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token)); } if (expected != token_type::uninitialized) { error_msg += "; expected " + std::string(lexer_t::token_type_name(expected)); } return error_msg; } private: /// callback function const parser_callback_t callback = nullptr; /// the type of the last read token token_type last_token = token_type::uninitialized; /// the lexer lexer_t m_lexer; /// whether to throw exceptions in case of errors const bool allow_exceptions = true; }; } }