#pragma once #include // reverse, remove, fill, find, none_of #include // array #include // assert #include // and, or #include // localeconv, lconv #include // labs, isfinite, isnan, signbit #include // size_t, ptrdiff_t #include // uint8_t #include // snprintf #include // numeric_limits #include // string #include // is_same #include #include #include #include #include #include namespace nlohmann { namespace detail { /////////////////// // serialization // /////////////////// template class serializer { using string_t = typename BasicJsonType::string_t; using number_float_t = typename BasicJsonType::number_float_t; using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; static constexpr uint8_t UTF8_ACCEPT = 0; static constexpr uint8_t UTF8_REJECT = 1; public: /*! @param[in] s output stream to serialize to @param[in] ichar indentation character to use */ serializer(output_adapter_t s, const char ichar) : o(std::move(s)), loc(std::localeconv()), thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep)), decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point)), indent_char(ichar), indent_string(512, indent_char) {} // delete because of pointer members serializer(const serializer&) = delete; serializer& operator=(const serializer&) = delete; /*! @brief internal implementation of the serialization function This function is called by the public member function dump and organizes the serialization internally. The indentation level is propagated as additional parameter. In case of arrays and objects, the function is called recursively. - strings and object keys are escaped using `escape_string()` - integer numbers are converted implicitly via `operator<<` - floating-point numbers are converted to a string using `"%g"` format @param[in] val value to serialize @param[in] pretty_print whether the output shall be pretty-printed @param[in] indent_step the indent level @param[in] current_indent the current indent level (only used internally) */ void dump(const BasicJsonType& val, const bool pretty_print, const bool ensure_ascii, const unsigned int indent_step, const unsigned int current_indent = 0) { switch (val.m_type) { case value_t::object: { if (val.m_value.object->empty()) { o->write_characters("{}", 2); return; } if (pretty_print) { o->write_characters("{\n", 2); // variable to hold indentation for recursive calls const auto new_indent = current_indent + indent_step; if (JSON_UNLIKELY(indent_string.size() < new_indent)) { indent_string.resize(indent_string.size() * 2, ' '); } // first n-1 elements auto i = val.m_value.object->cbegin(); for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i) { o->write_characters(indent_string.c_str(), new_indent); o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\": ", 3); dump(i->second, true, ensure_ascii, indent_step, new_indent); o->write_characters(",\n", 2); } // last element assert(i != val.m_value.object->cend()); assert(std::next(i) == val.m_value.object->cend()); o->write_characters(indent_string.c_str(), new_indent); o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\": ", 3); dump(i->second, true, ensure_ascii, indent_step, new_indent); o->write_character('\n'); o->write_characters(indent_string.c_str(), current_indent); o->write_character('}'); } else { o->write_character('{'); // first n-1 elements auto i = val.m_value.object->cbegin(); for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i) { o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\":", 2); dump(i->second, false, ensure_ascii, indent_step, current_indent); o->write_character(','); } // last element assert(i != val.m_value.object->cend()); assert(std::next(i) == val.m_value.object->cend()); o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\":", 2); dump(i->second, false, ensure_ascii, indent_step, current_indent); o->write_character('}'); } return; } case value_t::array: { if (val.m_value.array->empty()) { o->write_characters("[]", 2); return; } if (pretty_print) { o->write_characters("[\n", 2); // variable to hold indentation for recursive calls const auto new_indent = current_indent + indent_step; if (JSON_UNLIKELY(indent_string.size() < new_indent)) { indent_string.resize(indent_string.size() * 2, ' '); } // first n-1 elements for (auto i = val.m_value.array->cbegin(); i != val.m_value.array->cend() - 1; ++i) { o->write_characters(indent_string.c_str(), new_indent); dump(*i, true, ensure_ascii, indent_step, new_indent); o->write_characters(",\n", 2); } // last element assert(not val.m_value.array->empty()); o->write_characters(indent_string.c_str(), new_indent); dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent); o->write_character('\n'); o->write_characters(indent_string.c_str(), current_indent); o->write_character(']'); } else { o->write_character('['); // first n-1 elements for (auto i = val.m_value.array->cbegin(); i != val.m_value.array->cend() - 1; ++i) { dump(*i, false, ensure_ascii, indent_step, current_indent); o->write_character(','); } // last element assert(not val.m_value.array->empty()); dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent); o->write_character(']'); } return; } case value_t::string: { o->write_character('\"'); dump_escaped(*val.m_value.string, ensure_ascii); o->write_character('\"'); return; } case value_t::boolean: { if (val.m_value.boolean) { o->write_characters("true", 4); } else { o->write_characters("false", 5); } return; } case value_t::number_integer: { dump_integer(val.m_value.number_integer); return; } case value_t::number_unsigned: { dump_integer(val.m_value.number_unsigned); return; } case value_t::number_float: { dump_float(val.m_value.number_float); return; } case value_t::discarded: { o->write_characters("", 11); return; } case value_t::null: { o->write_characters("null", 4); return; } } } private: /*! @brief dump escaped string Escape a string by replacing certain special characters by a sequence of an escape character (backslash) and another character and other control characters by a sequence of "\u" followed by a four-digit hex representation. The escaped string is written to output stream @a o. @param[in] s the string to escape @param[in] ensure_ascii whether to escape non-ASCII characters with \uXXXX sequences @complexity Linear in the length of string @a s. */ void dump_escaped(const string_t& s, const bool ensure_ascii) { uint32_t codepoint; uint8_t state = UTF8_ACCEPT; std::size_t bytes = 0; // number of bytes written to string_buffer for (std::size_t i = 0; i < s.size(); ++i) { const auto byte = static_cast(s[i]); switch (decode(state, codepoint, byte)) { case UTF8_ACCEPT: // decode found a new code point { switch (codepoint) { case 0x08: // backspace { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'b'; break; } case 0x09: // horizontal tab { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 't'; break; } case 0x0A: // newline { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'n'; break; } case 0x0C: // formfeed { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'f'; break; } case 0x0D: // carriage return { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'r'; break; } case 0x22: // quotation mark { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = '\"'; break; } case 0x5C: // reverse solidus { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = '\\'; break; } default: { // escape control characters (0x00..0x1F) or, if // ensure_ascii parameter is used, non-ASCII characters if ((codepoint <= 0x1F) or (ensure_ascii and (codepoint >= 0x7F))) { if (codepoint <= 0xFFFF) { std::snprintf(string_buffer.data() + bytes, 7, "\\u%04x", static_cast(codepoint)); bytes += 6; } else { std::snprintf(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x", static_cast(0xD7C0 + (codepoint >> 10)), static_cast(0xDC00 + (codepoint & 0x3FF))); bytes += 12; } } else { // copy byte to buffer (all previous bytes // been copied have in default case above) string_buffer[bytes++] = s[i]; } break; } } // write buffer and reset index; there must be 13 bytes // left, as this is the maximal number of bytes to be // written ("\uxxxx\uxxxx\0") for one code point if (string_buffer.size() - bytes < 13) { o->write_characters(string_buffer.data(), bytes); bytes = 0; } break; } case UTF8_REJECT: // decode found invalid UTF-8 byte { std::string sn(3, '\0'); snprintf(&sn[0], sn.size(), "%.2X", byte); JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + sn)); } default: // decode found yet incomplete multi-byte code point { if (not ensure_ascii) { // code point will not be escaped - copy byte to buffer string_buffer[bytes++] = s[i]; } break; } } } if (JSON_LIKELY(state == UTF8_ACCEPT)) { // write buffer if (bytes > 0) { o->write_characters(string_buffer.data(), bytes); } } else { // we finish reading, but do not accept: string was incomplete std::string sn(3, '\0'); snprintf(&sn[0], sn.size(), "%.2X", static_cast(s.back())); JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + sn)); } } /*! @brief dump an integer Dump a given integer to output stream @a o. Works internally with @a number_buffer. @param[in] x integer number (signed or unsigned) to dump @tparam NumberType either @a number_integer_t or @a number_unsigned_t */ template::value or std::is_same::value, int> = 0> void dump_integer(NumberType x) { // special case for "0" if (x == 0) { o->write_character('0'); return; } const bool is_negative = (x <= 0) and (x != 0); // see issue #755 std::size_t i = 0; while (x != 0) { // spare 1 byte for '\0' assert(i < number_buffer.size() - 1); const auto digit = std::labs(static_cast(x % 10)); number_buffer[i++] = static_cast('0' + digit); x /= 10; } if (is_negative) { // make sure there is capacity for the '-' assert(i < number_buffer.size() - 2); number_buffer[i++] = '-'; } std::reverse(number_buffer.begin(), number_buffer.begin() + i); o->write_characters(number_buffer.data(), i); } /*! @brief dump a floating-point number Dump a given floating-point number to output stream @a o. Works internally with @a number_buffer. @param[in] x floating-point number to dump */ void dump_float(number_float_t x) { // NaN / inf if (not std::isfinite(x)) { o->write_characters("null", 4); return; } // If number_float_t is an IEEE-754 single or double precision number, // use the Grisu2 algorithm to produce short numbers which are // guaranteed to round-trip, using strtof and strtod, resp. // // NB: The test below works if == . static constexpr bool is_ieee_single_or_double = (std::numeric_limits::is_iec559 and std::numeric_limits::digits == 24 and std::numeric_limits::max_exponent == 128) or (std::numeric_limits::is_iec559 and std::numeric_limits::digits == 53 and std::numeric_limits::max_exponent == 1024); dump_float(x, std::integral_constant()); } void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/) { char* begin = number_buffer.data(); char* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x); o->write_characters(begin, static_cast(end - begin)); } void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/) { // get number of digits for a float -> text -> float round-trip static constexpr auto d = std::numeric_limits::max_digits10; // the actual conversion std::ptrdiff_t len = snprintf(number_buffer.data(), number_buffer.size(), "%.*g", d, x); // negative value indicates an error assert(len > 0); // check if buffer was large enough assert(static_cast(len) < number_buffer.size()); // erase thousands separator if (thousands_sep != '\0') { const auto end = std::remove(number_buffer.begin(), number_buffer.begin() + len, thousands_sep); std::fill(end, number_buffer.end(), '\0'); assert((end - number_buffer.begin()) <= len); len = (end - number_buffer.begin()); } // convert decimal point to '.' if (decimal_point != '\0' and decimal_point != '.') { const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point); if (dec_pos != number_buffer.end()) { *dec_pos = '.'; } } o->write_characters(number_buffer.data(), static_cast(len)); // determine if need to append ".0" const bool value_is_int_like = std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1, [](char c) { return (c == '.' or c == 'e'); }); if (value_is_int_like) { o->write_characters(".0", 2); } } /*! @brief check whether a string is UTF-8 encoded The function checks each byte of a string whether it is UTF-8 encoded. The result of the check is stored in the @a state parameter. The function must be called initially with state 0 (accept). State 1 means the string must be rejected, because the current byte is not allowed. If the string is completely processed, but the state is non-zero, the string ended prematurely; that is, the last byte indicated more bytes should have followed. @param[in,out] state the state of the decoding @param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT) @param[in] byte next byte to decode @return new state @note The function has been edited: a std::array is used. @copyright Copyright (c) 2008-2009 Bjoern Hoehrmann @sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ */ static uint8_t decode(uint8_t& state, uint32_t& codep, const uint8_t byte) noexcept { static const std::array utf8d = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF 0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF 0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF 0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8 } }; const uint8_t type = utf8d[byte]; codep = (state != UTF8_ACCEPT) ? (byte & 0x3fu) | (codep << 6) : static_cast(0xff >> type) & (byte); state = utf8d[256u + state * 16u + type]; return state; } private: /// the output of the serializer output_adapter_t o = nullptr; /// a (hopefully) large enough character buffer std::array number_buffer{{}}; /// the locale const std::lconv* loc = nullptr; /// the locale's thousand separator character const char thousands_sep = '\0'; /// the locale's decimal point character const char decimal_point = '\0'; /// string buffer std::array string_buffer{{}}; /// the indentation character const char indent_char; /// the indentation string string_t indent_string; }; } }