/*
 * Copyright 2022 Birte Kristina Friesel
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */
#include "arch.h"
#include "driver/gpio.h"
#include "driver/stdout.h"
#if defined(CONFIG_meta_driver_hardware_i2c)
#include "driver/i2c.h"
#else
#include "driver/soft_i2c.h"
#endif
#include "driver/bme680.h"
#include "driver/bme680_util.h"
#include "driver/max44009.h"

#ifdef MULTIPASS_ARCH_arduino_nano
#define POWER_PIN GPIO::pc3
#endif

struct bme680_field_data data;
float lux;
int8_t bme680_status;

static void bme680_init(void)
{
	bme680_status = bme680.init();
	kout << "# BME680 init returned " << bme680_status << endl;

	bme680.power_mode = BME680_FORCED_MODE;
	bme680.tph_sett.os_hum = BME680_OS_2X;
	bme680.tph_sett.os_pres = BME680_OS_16X;
	bme680.tph_sett.os_temp = BME680_OS_2X;

	bme680.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
	bme680.gas_sett.heatr_dur = 100;
	bme680.gas_sett.heatr_temp = 300;
	bme680.setSensorSettings(BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL);
}

void loop(void)
{
	static unsigned char i = 0;

	if (lux >= 0 && bme680_status == 0) {
		gpio.led_off(0);
	} else {
		gpio.led_on(0);
	}

#ifdef POWER_PIN
	if (lux < 0 || bme680_status != 0) {
		if (i == 17) {
			kout << "# Cycling power to I2C clients" << endl;
			gpio.write(POWER_PIN, 0);
		} else if (i == 18) {
			gpio.write(POWER_PIN, 1);
		} else if (i == 19) {
			bme680_init();
		}
	}
#endif

#ifdef MULTIPASS_ARCH_arduino_nano
	if ((i == 1) && (ADCSRA & _BV(ADIF))) {
		uint8_t adcr_l = ADCL;
		uint8_t adcr_h = ADCH;
		uint16_t adcr = adcr_l + (adcr_h << 8);
		uint16_t vcc = 1100L * 1023 / adcr;

		TIFR1 |= _BV(TOV1);
		ADCSRA |= _BV(ADIF);

		kout << "VCC: " << vcc << endl;
	}
#endif

	if (i == 0) {
		lux = max44009.getLux();
		if (lux >= 0) {
			kout << "MAX44009: ";
			kout.printf_float(max44009.getLux());
			kout << " lx" << endl;
		} else {
			kout << "# MAX44009 error" << endl;
		}
	}

	if (i == 1 && bme680_status == 0) {
		bme680_status = bme680.setSensorMode();
	}
	else if (i == 2) {
		if (bme680_status == 0) {
			bme680_status = bme680.getSensorData(&data);
		}
		if (bme680_status == 0) {
			bme680.amb_temp = data.temperature;
			kout << "BME680 temperature: " << data.temperature << " degC" << endl;
			kout << "BME680 humidity: " << data.humidity  << " %" << endl;
			kout << "BME680 pressure: " << data.pressure / 100 << " hPa" << endl;
			kout << "BME680 gas resistance: " << data.gas_resistance << endl;
		} else {
			kout << "# BME680 error " << bme680_status << endl;
		}
	}

	i = (i + 1) % 20;
}

int main(void)
{
	arch.setup();
	gpio.setup();
	kout.setup();

#ifdef POWER_PIN
	gpio.output(POWER_PIN);
	gpio.write(POWER_PIN, 1);
#endif

#ifdef MULTIPASS_ARCH_arduino_nano

	kout << "# Reset reason: " << MCUSR << endl;
	MCUSR = 0;

	/* watchdog reset after ~4 seconds */
	asm("wdr");
	WDTCSR = _BV(WDCE) | _BV(WDE);
	WDTCSR = _BV(WDE) | _BV(WDP3);

	// One ADC conversion per four seconds
	TCCR0A = 0;
	TCCR0B = _BV(CS12) | _BV(CS10);

	// Measure internal 1.1V bandgap using VCC as reference on each Timer 0 overflow
	ADMUX = _BV(REFS0) | 0x0e;
	ADCSRB = _BV(ADTS2);
	ADCSRA = _BV(ADEN) | _BV(ADATE) | _BV(ADPS2) | _BV(ADPS1);
#endif

	while (i2c.setup() != 0) {
		kout << "# I2C setup failed" << endl;
		arch.delay_ms(100);
	}

	kout << "# I2C setup OK" << endl;

	bme680.intf = BME680_I2C_INTF;
	bme680.read = bme680_i2c_read;
	bme680.write = bme680_i2c_write;
	bme680.delay_ms = bme680_delay_ms;

	bme680.amb_temp = 25;

	bme680_init();

	arch.idle_loop();

	return 0;
}