/* * Copyright 2021 Daniel Friesel * * SPDX-License-Identifier: BSD-2-Clause */ #include "arch.h" #include "driver/gpio.h" #include "driver/stdout.h" #if defined(CONFIG_meta_driver_hardware_i2c) #include "driver/i2c.h" #else #include "driver/soft_i2c.h" #endif #include "driver/bme680.h" #include "driver/bme680_util.h" #include "driver/max44009.h" #ifdef MULTIPASS_ARCH_arduino_nano #define POWER_PIN GPIO::pc3 #endif struct bme680_field_data data; float lux; int8_t bme680_status; static void bme680_init(void) { bme680_status = bme680.init(); kout << "# BME680 init returned " << bme680_status << endl; bme680.power_mode = BME680_FORCED_MODE; bme680.tph_sett.os_hum = BME680_OS_2X; bme680.tph_sett.os_pres = BME680_OS_16X; bme680.tph_sett.os_temp = BME680_OS_2X; bme680.gas_sett.run_gas = BME680_ENABLE_GAS_MEAS; bme680.gas_sett.heatr_dur = 100; bme680.gas_sett.heatr_temp = 300; bme680.setSensorSettings(BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_GAS_SENSOR_SEL); } void loop(void) { static unsigned char i = 0; if (lux >= 0 && bme680_status == 0) { gpio.led_off(0); } else { gpio.led_on(0); } #ifdef POWER_PIN if (lux < 0 || bme680_status != 0) { if (i == 17) { kout << "# Cycling power to I2C clients" << endl; gpio.write(POWER_PIN, 0); } else if (i == 18) { gpio.write(POWER_PIN, 1); } else if (i == 19) { bme680_init(); } } #endif #ifdef MULTIPASS_ARCH_arduino_nano if ((i == 1) && (ADCSRA & _BV(ADIF))) { uint8_t adcr_l = ADCL; uint8_t adcr_h = ADCH; uint16_t adcr = adcr_l + (adcr_h << 8); uint16_t vcc = 1100L * 1023 / adcr; TIFR1 |= _BV(TOV1); ADCSRA |= _BV(ADIF); kout << "VCC: " << vcc << endl; } #endif if (i == 0) { lux = max44009.getLux(); if (lux >= 0) { kout << "MAX44009: "; kout.printf_float(max44009.getLux()); kout << " lx" << endl; } else { kout << "# MAX44009 error" << endl; } } if (i == 1 && bme680_status == 0) { bme680_status = bme680.setSensorMode(); } else if (i == 2) { if (bme680_status == 0) { bme680_status = bme680.getSensorData(&data); } if (bme680_status == 0) { bme680.amb_temp = data.temperature; kout << "BME680 temperature: " << data.temperature << " degC" << endl; kout << "BME680 humidity: " << data.humidity << " %" << endl; kout << "BME680 pressure: " << data.pressure / 100 << " hPa" << endl; kout << "BME680 gas resistance: " << data.gas_resistance << endl; } else { kout << "# BME680 error " << bme680_status << endl; } } i = (i + 1) % 20; } int main(void) { arch.setup(); gpio.setup(); kout.setup(); #ifdef POWER_PIN gpio.output(POWER_PIN); gpio.write(POWER_PIN, 1); #endif #ifdef MULTIPASS_ARCH_arduino_nano kout << "# Reset reason: " << MCUSR << endl; MCUSR = 0; /* watchdog reset after ~4 seconds */ asm("wdr"); WDTCSR = _BV(WDCE) | _BV(WDE); WDTCSR = _BV(WDE) | _BV(WDP3); // One ADC conversion per four seconds TCCR0A = 0; TCCR0B = _BV(CS12) | _BV(CS10); // Measure internal 1.1V bandgap using VCC as reference on each Timer 0 overflow ADMUX = _BV(REFS0) | 0x0e; ADCSRB = _BV(ADTS2); ADCSRA = _BV(ADEN) | _BV(ADATE) | _BV(ADPS2) | _BV(ADPS1); #endif if (i2c.setup() != 0) { kout << "# I2C setup failed" << endl; return 1; } kout << "# I2C setup OK" << endl; bme680.intf = BME680_I2C_INTF; bme680.read = bme680_i2c_read; bme680.write = bme680_i2c_write; bme680.delay_ms = bme680_delay_ms; bme680.amb_temp = 25; bme680_init(); arch.idle_loop(); return 0; }