/* * Copyright 2020 Daniel Friesel * * SPDX-License-Identifier: BSD-2-Clause */ #include "arch.h" #include "driver/gpio.h" #include "driver/stdout.h" #include "driver/uptime.h" unsigned char const deflate_input[] = { 120, 1, 5, 193, 193, 13, 192, 32, 16, 3, 193, 86, 182, 182, 196, 68, 220, 135, 147, 12, 86, 218, 103, 102, 198, 70, 133, 98, 147, 37, 118, 243, 143, 58, 195, 100, 137, 221, 124, 237, 195, 140, 141, 10, 197, 102, 191, 51, 79, 41, 23, 153, 255, 22, 11 }; unsigned char* udeflate_input_end; unsigned char* udeflate_input_now; uint8_t udeflate_bit_offset = 0; unsigned char deflate_output[1024]; uint16_t const udeflate_length_offsets[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258 }; // TODO (index < 4 || index == 28) ? 0 : (index-4) >> 2 uint8_t const udeflate_length_bits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; uint16_t const udeflate_distance_offsets[] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 }; // TODO index < 2 ? 0 : (index-2) >> 1 uint8_t const udeflate_distance_bits[] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 }; uint8_t const udeflate_hclen_index[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; uint8_t udeflate_hc_lengths[19]; uint8_t udeflate_lld_lengths[337]; static uint16_t udeflate_rev_word(uint16_t word, uint8_t bits) { uint16_t ret = 0; uint16_t mask = 1; for (uint16_t rmask = 1 << (bits-1); rmask > 0; rmask >>= 1) { if (word & rmask) { ret |= mask; } mask <<= 1; } return ret; } static uint8_t udeflate_bitmask(uint8_t bit_count) { return (1 << bit_count) - 1; } static uint16_t udeflate_get_word() { uint16_t ret = 0; ret |= (udeflate_input_now[0] >> udeflate_bit_offset); ret |= (uint16_t)udeflate_input_now[1] << (8 - udeflate_bit_offset); if (udeflate_bit_offset) { ret |= (uint16_t)(udeflate_input_now[2] & udeflate_bitmask(udeflate_bit_offset)) << (16 - udeflate_bit_offset); } kout << "get_word = " << bin << ret << dec << endl; return ret; } static uint16_t udeflate_get_bits(uint8_t num_bits) { uint16_t ret = udeflate_get_word(); udeflate_bit_offset += num_bits; while (udeflate_bit_offset >= 8) { udeflate_input_now++; udeflate_bit_offset -= 8; } return ret & udeflate_bitmask(num_bits); } /* * Assumptions: * * huffman code length is limited to 11 bits * * there are no more than 255 huffman codes with the same length * * Rationale: longer huffman codes might appear when handling large data * sets. We don't do that; instead, we expect the uncompressed source to * be no more than a few kB of data. */ // used for huffman alphabet in type 2 and literal/length alphabet in type 1&2 uint8_t udeflate_bl_count_ll[12]; uint16_t udeflate_next_code_ll[12]; // used for distance alphabet in types 1&2 uint8_t udeflate_bl_count_d[12]; uint16_t udeflate_next_code_d[12]; static void udeflate_build_alphabet(uint8_t* lengths, uint16_t size, uint8_t* bl_count, uint16_t* next_code) { uint16_t i; uint16_t code = 0; uint16_t max_len = 0; for (i = 0; i < 12; i++) { bl_count[i] = 0; } for (i = 0; i < size; i++) { if (lengths[i]) { bl_count[lengths[i]]++; } if (lengths[i] > max_len) { max_len = lengths[i]; } } for (i = 1; i < max_len+1; i++) { code = (code + bl_count[i-1]) << 1; next_code[i] = code; } for (i = 0; i < 12; i++) { kout << "bl_count[" << i << "] = " << bl_count[i] << endl; } for (i = 0; i < 12; i++) { kout << "next_code[" << i << "] = " << next_code[i] << endl; } } static uint16_t udeflate_huff(uint8_t* lengths, uint16_t size, uint8_t* bl_count, uint16_t* next_code) { uint16_t next_word = udeflate_get_word(); for (uint8_t num_bits = 1; num_bits < 12; num_bits++) { uint16_t next_bits = udeflate_rev_word(next_word, num_bits); // TODO benötigt bit reversal bei der Abgleichung code <-> next_bits // (geeignete is_bit_eq(next_bits, code_candidate, num_bits) Funktion?) if (bl_count[num_bits] && next_bits >= next_code[num_bits] && next_bits < next_code[num_bits] + bl_count[num_bits] ) { kout << "found huffman code, length = " << num_bits << endl; udeflate_bit_offset += num_bits; while (udeflate_bit_offset >= 8) { udeflate_input_now++; udeflate_bit_offset -= 8; } uint8_t len_pos = next_bits; uint8_t cur_pos = next_code[num_bits]; for (uint16_t i = 0; i < size; i++) { if (lengths[i] == num_bits) { if (cur_pos == len_pos) { return i; } cur_pos++; } } } } return 65535; } static int8_t udeflate_huffman(uint8_t* ll_lengths, uint16_t ll_size, uint8_t* d_lengths, uint8_t d_size) { uint16_t code; uint16_t dcode; uint16_t output_pos = 0; while (1) { code = udeflate_huff(ll_lengths, ll_size, udeflate_bl_count_ll, udeflate_next_code_ll); kout << "code " << code << endl; if (code < 256) { deflate_output[output_pos] = code; output_pos++; } else if (code == 256) { return 0; } else { uint16_t len_val = udeflate_length_offsets[code - 257]; uint8_t extra_bits = udeflate_length_bits[code - 257]; if (extra_bits) { len_val += udeflate_get_bits(extra_bits); } dcode = udeflate_huff(d_lengths, d_size, udeflate_bl_count_d, udeflate_next_code_d); uint16_t dist_val = udeflate_distance_offsets[dcode]; extra_bits = udeflate_distance_bits[dcode]; if (extra_bits) { dist_val += udeflate_get_bits(extra_bits); } while (len_val--) { deflate_output[output_pos] = deflate_output[output_pos-dist_val]; output_pos++; } } } } static int8_t udeflate_dynamic_huffman() { uint8_t i; uint16_t hlit = 257 + udeflate_get_bits(5); kout << "hlit=" << hlit << endl; uint8_t hdist = 1 + udeflate_get_bits(5); kout << "hdist=" << hdist << endl; uint8_t hclen = 4 + udeflate_get_bits(4); kout << "hclen=" << hclen << endl; for (i = 0; i < hclen; i++) { udeflate_hc_lengths[udeflate_hclen_index[i]] = udeflate_get_bits(3); } for (i = hclen; i < sizeof(udeflate_hc_lengths); i++) { udeflate_hc_lengths[udeflate_hclen_index[i]] = 0; } udeflate_build_alphabet(udeflate_hc_lengths, sizeof(udeflate_hc_lengths), udeflate_bl_count_ll, udeflate_next_code_ll); uint16_t items_processed = 0; while (items_processed < hlit + hdist) { uint8_t code = udeflate_huff(udeflate_hc_lengths, 19, udeflate_bl_count_ll, udeflate_next_code_ll); kout << "code = " << code << endl; if (code == 16) { uint8_t copy_count = 3 + udeflate_get_bits(2); for (uint8_t i = 0; i < copy_count; i++) { udeflate_lld_lengths[items_processed] = udeflate_lld_lengths[items_processed-1]; items_processed++; } } else if (code == 17) { uint8_t null_count = 3 + udeflate_get_bits(3); for (uint8_t i = 0; i < null_count; i++) { udeflate_lld_lengths[items_processed] = 0; items_processed++; } } else if (code == 18) { uint8_t null_count = 11 + udeflate_get_bits(7); for (uint8_t i = 0; i < null_count; i++) { udeflate_lld_lengths[items_processed] = 0; items_processed++; } } else { udeflate_lld_lengths[items_processed] = code; items_processed++; } } udeflate_build_alphabet(udeflate_lld_lengths, hlit, udeflate_bl_count_ll, udeflate_next_code_ll); udeflate_build_alphabet(udeflate_lld_lengths + hlit, hdist, udeflate_bl_count_d, udeflate_next_code_d); return udeflate_huffman(udeflate_lld_lengths, hlit, udeflate_lld_lengths + hlit, hdist); return 0; } int8_t udeflate(unsigned char* buf, uint16_t buf_len) { uint8_t is_final = buf[0] & 0x01; uint8_t block_type = (buf[0] & 0x06) >> 1; kout << "is_final=" << is_final << " block_type=" << block_type << endl; udeflate_input_now = buf; udeflate_input_end = buf + buf_len; udeflate_bit_offset = 3; if (block_type == 2) { return udeflate_dynamic_huffman(); } return -4; } int8_t udeflate_zlib(unsigned char* buf, uint16_t buf_len) { if (buf_len < 4) { return -1; } uint8_t zlib_method = buf[0] & 0x0f; uint16_t zlib_window_size = 1 << (8 + ((buf[0] & 0xf0) >> 4)); uint8_t zlib_flags = buf[1]; kout << "zlib_method=" << zlib_method << endl; kout << "zlib_window_size=" << zlib_window_size << endl; if (zlib_method != 8) { return -2; } if (zlib_flags & 0x10) { return -3; } return udeflate(buf+2, buf_len-2); } int main(void) { arch.setup(); gpio.setup(); kout.setup(); for (uint8_t i = 0; i < 5; i++) { int8_t ret = udeflate_zlib((unsigned char*)deflate_input, sizeof(deflate_input)); kout << "udeflate returned " << ret << endl; kout << "Output: " << (char*)deflate_output << endl; } arch.idle(); return 0; }