/* * /\ * / \ * / !! \ * /______\ * * In order to use the I2C interface, CSB needs to be pulled up before turning * on VDDIO (and after VDD). On most BME280 breakout boards sold on * AliExpress and similar sites, VDD and VDDIO are connected and there is only * one external VCC input, so following the power sequence outlined in the * datasheet is not possible. Additionally, the pull-up resistor connecting * CSB to VCC may delay logic high level on CSB long enough for the BM280 * to start in SPI mode. * * In this case, you should connect (or power up, when using GPIO power) * breakout board pins in the following order: * * GND, SDA, SCLD * * CSB to 3V3 * * VDD to 3V3 */ /**\mainpage * Copyright (C) 2018 - 2019 Bosch Sensortec GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the copyright holder nor the names of the * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER * OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE * * The information provided is believed to be accurate and reliable. * The copyright holder assumes no responsibility * for the consequences of use * of such information nor for any infringement of patents or * other rights of third parties which may result from its use. * No license is granted by implication or otherwise under any patent or * patent rights of the copyright holder. * * File bme280.c * Date 26 Aug 2019 * Version 3.3.7 * */ /*! @file bme280.c * @brief Sensor driver for BME280 sensor */ #include "driver/bme280.h" /**\name Internal macros */ /* To identify osr settings selected by user */ #define OVERSAMPLING_SETTINGS UINT8_C(0x07) /* To identify filter and standby settings selected by user */ #define FILTER_STANDBY_SETTINGS UINT8_C(0x18) /****************** Global Function Definitions *******************************/ /*! * @brief This API is the entry point. * It reads the chip-id and calibration data from the sensor. */ int8_t BME280::init() { int8_t rslt; /* chip id read try count */ uint8_t try_count = 5; uint8_t chip_id = 0; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); /* Proceed if null check is fine */ if (rslt == BME280_OK) { while (try_count) { /* Read the chip-id of bme280 sensor */ rslt = getRegs(BME280_CHIP_ID_ADDR, &chip_id, 1); /* Check for chip id validity */ if ((rslt == BME280_OK) && (chip_id == BME280_CHIP_ID)) { /* Reset the sensor */ rslt = softReset(); if (rslt == BME280_OK) { /* Read the calibration data */ rslt = get_calib_data(); } break; } /* Wait for 1 ms */ delay_ms(1); --try_count; } /* Chip id check failed */ if (!try_count) { rslt = BME280_E_DEV_NOT_FOUND; } } return rslt; } /*! * @brief This API reads the data from the given register address of the sensor. */ int8_t BME280::getRegs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { int8_t rslt; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); /* Proceed if null check is fine */ if (rslt == BME280_OK) { /* If interface selected is SPI */ if (intf != BME280_I2C_INTF) { reg_addr = reg_addr | 0x80; } /* Read the data */ rslt = read(dev_id, reg_addr, reg_data, len); /* Check for communication error */ if (rslt != BME280_OK) { rslt = BME280_E_COMM_FAIL; } } return rslt; } /*! * @brief This API writes the given data to the register address * of the sensor. */ int8_t BME280::setRegs(uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len) { int8_t rslt; uint8_t temp_buff[20]; /* Typically not to write more than 10 registers */ if (len > 10) { len = 10; } uint16_t temp_len; uint8_t reg_addr_cnt; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); /* Check for arguments validity */ if ((rslt == BME280_OK) && (reg_addr != NULL) && (reg_data != NULL)) { if (len != 0) { temp_buff[0] = reg_data[0]; /* If interface selected is SPI */ if (intf != BME280_I2C_INTF) { for (reg_addr_cnt = 0; reg_addr_cnt < len; reg_addr_cnt++) { reg_addr[reg_addr_cnt] = reg_addr[reg_addr_cnt] & 0x7F; } } /* Burst write mode */ if (len > 1) { /* Interleave register address w.r.t data for * burst write */ interleave_reg_addr(reg_addr, temp_buff, reg_data, len); temp_len = ((len * 2) - 1); } else { temp_len = len; } rslt = write(dev_id, reg_addr[0], temp_buff, temp_len); /* Check for communication error */ if (rslt != BME280_OK) { rslt = BME280_E_COMM_FAIL; } } else { rslt = BME280_E_INVALID_LEN; } } else { rslt = BME280_E_NULL_PTR; } return rslt; } /*! * @brief This API sets the oversampling, filter and standby duration * (normal mode) settings in the sensor. */ int8_t BME280::setSensorSettings(uint8_t desired_settings) { int8_t rslt; uint8_t sensor_mode; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); /* Proceed if null check is fine */ if (rslt == BME280_OK) { rslt = getSensorMode(&sensor_mode); if ((rslt == BME280_OK) && (sensor_mode != BME280_SLEEP_MODE)) { rslt = put_device_to_sleep(); } if (rslt == BME280_OK) { /* Check if user wants to change oversampling * settings */ if (are_settings_changed(OVERSAMPLING_SETTINGS, desired_settings)) { rslt = set_osr_settings(desired_settings, &settings); } /* Check if user wants to change filter and/or * standby settings */ if ((rslt == BME280_OK) && are_settings_changed(FILTER_STANDBY_SETTINGS, desired_settings)) { rslt = set_filter_standby_settings(desired_settings, &settings); } } } return rslt; } /*! * @brief This API gets the oversampling, filter and standby duration * (normal mode) settings from the sensor. */ int8_t BME280::getSensorSettings() { int8_t rslt; uint8_t reg_data[4]; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); /* Proceed if null check is fine */ if (rslt == BME280_OK) { rslt = getRegs(BME280_CTRL_HUM_ADDR, reg_data, 4); if (rslt == BME280_OK) { parse_device_settings(reg_data, &settings); } } return rslt; } /*! * @brief This API sets the power mode of the sensor. */ int8_t BME280::setSensorMode(uint8_t sensor_mode) { int8_t rslt; uint8_t last_set_mode; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); if (rslt == BME280_OK) { rslt = getSensorMode(&last_set_mode); /* If the sensor is not in sleep mode put the device to sleep * mode */ if ((rslt == BME280_OK) && (last_set_mode != BME280_SLEEP_MODE)) { rslt = put_device_to_sleep(); } /* Set the power mode */ if (rslt == BME280_OK) { rslt = write_power_mode(sensor_mode); } } return rslt; } /*! * @brief This API gets the power mode of the sensor. */ int8_t BME280::getSensorMode(uint8_t *sensor_mode) { int8_t rslt; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); if (rslt == BME280_OK) { /* Read the power mode register */ rslt = getRegs(BME280_PWR_CTRL_ADDR, sensor_mode, 1); /* Assign the power mode in the device structure */ *sensor_mode = BME280_GET_BITS_POS_0(*sensor_mode, BME280_SENSOR_MODE); } return rslt; } /*! * @brief This API performs the soft reset of the sensor. */ int8_t BME280::softReset() { int8_t rslt; uint8_t reg_addr = BME280_RESET_ADDR; uint8_t status_reg = 0; uint8_t try_run = 5; /* 0xB6 is the soft reset command */ uint8_t soft_rst_cmd = BME280_SOFT_RESET_COMMAND; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); /* Proceed if null check is fine */ if (rslt == BME280_OK) { /* Write the soft reset command in the sensor */ rslt = setRegs(®_addr, &soft_rst_cmd, 1); if (rslt == BME280_OK) { /* If NVM not copied yet, Wait for NVM to copy */ do { /* As per data sheet - Table 1, startup time is 2 ms. */ delay_ms(2); rslt = getRegs(BME280_STATUS_REG_ADDR, &status_reg, 1); } while ((rslt == BME280_OK) && (try_run--) && (status_reg & BME280_STATUS_IM_UPDATE)); if (status_reg & BME280_STATUS_IM_UPDATE) { rslt = BME280_E_NVM_COPY_FAILED; } } } return rslt; } /*! * @brief This API reads the pressure, temperature and humidity data from the * sensor, compensates the data and store it in the bme280_data structure * instance passed by the user. */ int8_t BME280::getSensorData(uint8_t sensor_comp, struct bme280_data *comp_data) { int8_t rslt; /* Array to store the pressure, temperature and humidity data read from * the sensor */ uint8_t reg_data[BME280_P_T_H_DATA_LEN] = { 0 }; struct bme280_uncomp_data uncomp_data = { 0, 0, 0 }; /* Check for null pointer in the device structure*/ rslt = null_ptr_check(); if ((rslt == BME280_OK) && (comp_data != NULL)) { /* Read the pressure and temperature data from the sensor */ rslt = getRegs(BME280_DATA_ADDR, reg_data, BME280_P_T_H_DATA_LEN); if (rslt == BME280_OK) { /* Parse the read data from the sensor */ parseSensorData(reg_data, &uncomp_data); /* Compensate the pressure and/or temperature and/or * humidity data from the sensor */ rslt = compensateSensorData(sensor_comp, &uncomp_data, comp_data, &calib_data); } } else { rslt = BME280_E_NULL_PTR; } return rslt; } /*! * @brief This API is used to parse the pressure, temperature and * humidity data and store it in the bme280_uncomp_data structure instance. */ void BME280::parseSensorData(const uint8_t *reg_data, struct bme280_uncomp_data *uncomp_data) { /* Variables to store the sensor data */ uint32_t data_xlsb; uint32_t data_lsb; uint32_t data_msb; /* Store the parsed register values for pressure data */ data_msb = (uint32_t)reg_data[0] << 12; data_lsb = (uint32_t)reg_data[1] << 4; data_xlsb = (uint32_t)reg_data[2] >> 4; uncomp_data->pressure = data_msb | data_lsb | data_xlsb; /* Store the parsed register values for temperature data */ data_msb = (uint32_t)reg_data[3] << 12; data_lsb = (uint32_t)reg_data[4] << 4; data_xlsb = (uint32_t)reg_data[5] >> 4; uncomp_data->temperature = data_msb | data_lsb | data_xlsb; /* Store the parsed register values for temperature data */ data_lsb = (uint32_t)reg_data[6] << 8; data_msb = (uint32_t)reg_data[7]; uncomp_data->humidity = data_msb | data_lsb; } /*! * @brief This API is used to compensate the pressure and/or * temperature and/or humidity data according to the component selected * by the user. */ int8_t BME280::compensateSensorData(uint8_t sensor_comp, const struct bme280_uncomp_data *uncomp_data, struct bme280_data *comp_data, struct bme280_calib_data *calib_data) { int8_t rslt = BME280_OK; if ((uncomp_data != NULL) && (comp_data != NULL) && (calib_data != NULL)) { /* Initialize to zero */ comp_data->temperature = 0; comp_data->pressure = 0; comp_data->humidity = 0; /* If pressure or temperature component is selected */ if (sensor_comp & (BME280_PRESS | BME280_TEMP | BME280_HUM)) { /* Compensate the temperature data */ comp_data->temperature = compensate_temperature(uncomp_data, calib_data); } if (sensor_comp & BME280_PRESS) { /* Compensate the pressure data */ comp_data->pressure = compensate_pressure(uncomp_data, calib_data); } if (sensor_comp & BME280_HUM) { /* Compensate the humidity data */ comp_data->humidity = compensate_humidity(uncomp_data, calib_data); } } else { rslt = BME280_E_NULL_PTR; } return rslt; } /*! * @brief This internal API sets the oversampling settings for pressure, * temperature and humidity in the sensor. */ int8_t BME280::set_osr_settings(uint8_t desired_settings, const struct bme280_settings *settings) { int8_t rslt = BME280_W_INVALID_OSR_MACRO; if (desired_settings & BME280_OSR_HUM_SEL) { rslt = set_osr_humidity_settings(settings); } if (desired_settings & (BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL)) { rslt = set_osr_press_temp_settings(desired_settings, settings); } return rslt; } /*! * @brief This API sets the humidity oversampling settings of the sensor. */ int8_t BME280::set_osr_humidity_settings(const struct bme280_settings *settings) { int8_t rslt; uint8_t ctrl_hum; uint8_t ctrl_meas; uint8_t reg_addr = BME280_CTRL_HUM_ADDR; ctrl_hum = settings->osr_h & BME280_CTRL_HUM_MSK; /* Write the humidity control value in the register */ rslt = setRegs(®_addr, &ctrl_hum, 1); /* Humidity related changes will be only effective after a * write operation to ctrl_meas register */ if (rslt == BME280_OK) { reg_addr = BME280_CTRL_MEAS_ADDR; rslt = getRegs(reg_addr, &ctrl_meas, 1); if (rslt == BME280_OK) { rslt = setRegs(®_addr, &ctrl_meas, 1); } } return rslt; } /*! * @brief This API sets the pressure and/or temperature oversampling settings * in the sensor according to the settings selected by the user. */ int8_t BME280::set_osr_press_temp_settings(uint8_t desired_settings, const struct bme280_settings *settings) { int8_t rslt; uint8_t reg_addr = BME280_CTRL_MEAS_ADDR; uint8_t reg_data; rslt = BME280::getRegs(reg_addr, ®_data, 1); if (rslt == BME280_OK) { if (desired_settings & BME280_OSR_PRESS_SEL) { fill_osr_press_settings(®_data, settings); } if (desired_settings & BME280_OSR_TEMP_SEL) { fill_osr_temp_settings(®_data, settings); } /* Write the oversampling settings in the register */ rslt = BME280::setRegs(®_addr, ®_data, 1); } return rslt; } /*! * @brief This internal API sets the filter and/or standby duration settings * in the sensor according to the settings selected by the user. */ int8_t BME280::set_filter_standby_settings(uint8_t desired_settings, const struct bme280_settings *settings) { int8_t rslt; uint8_t reg_addr = BME280_CONFIG_ADDR; uint8_t reg_data; rslt = getRegs(reg_addr, ®_data, 1); if (rslt == BME280_OK) { if (desired_settings & BME280_FILTER_SEL) { fill_filter_settings(®_data, settings); } if (desired_settings & BME280_STANDBY_SEL) { fill_standby_settings(®_data, settings); } /* Write the oversampling settings in the register */ rslt = setRegs(®_addr, ®_data, 1); } return rslt; } /*! * @brief This internal API fills the filter settings provided by the user * in the data buffer so as to write in the sensor. */ void BME280::fill_filter_settings(uint8_t *reg_data, const struct bme280_settings *settings) { *reg_data = BME280_SET_BITS(*reg_data, BME280_FILTER, settings->filter); } /*! * @brief This internal API fills the standby duration settings provided by * the user in the data buffer so as to write in the sensor. */ void BME280::fill_standby_settings(uint8_t *reg_data, const struct bme280_settings *settings) { *reg_data = BME280_SET_BITS(*reg_data, BME280_STANDBY, settings->standby_time); } /*! * @brief This internal API fills the pressure oversampling settings provided by * the user in the data buffer so as to write in the sensor. */ void BME280::fill_osr_press_settings(uint8_t *reg_data, const struct bme280_settings *settings) { *reg_data = BME280_SET_BITS(*reg_data, BME280_CTRL_PRESS, settings->osr_p); } /*! * @brief This internal API fills the temperature oversampling settings * provided by the user in the data buffer so as to write in the sensor. */ void BME280::fill_osr_temp_settings(uint8_t *reg_data, const struct bme280_settings *settings) { *reg_data = BME280_SET_BITS(*reg_data, BME280_CTRL_TEMP, settings->osr_t); } /*! * @brief This internal API parse the oversampling(pressure, temperature * and humidity), filter and standby duration settings and store in the * device structure. */ void BME280::parse_device_settings(const uint8_t *reg_data, struct bme280_settings *settings) { settings->osr_h = BME280_GET_BITS_POS_0(reg_data[0], BME280_CTRL_HUM); settings->osr_p = BME280_GET_BITS(reg_data[2], BME280_CTRL_PRESS); settings->osr_t = BME280_GET_BITS(reg_data[2], BME280_CTRL_TEMP); settings->filter = BME280_GET_BITS(reg_data[3], BME280_FILTER); settings->standby_time = BME280_GET_BITS(reg_data[3], BME280_STANDBY); } /*! * @brief This internal API writes the power mode in the sensor. */ int8_t BME280::write_power_mode(uint8_t sensor_mode) { int8_t rslt; uint8_t reg_addr = BME280_PWR_CTRL_ADDR; /* Variable to store the value read from power mode register */ uint8_t sensor_mode_reg_val; /* Read the power mode register */ rslt = getRegs(reg_addr, &sensor_mode_reg_val, 1); /* Set the power mode */ if (rslt == BME280_OK) { sensor_mode_reg_val = BME280_SET_BITS_POS_0(sensor_mode_reg_val, BME280_SENSOR_MODE, sensor_mode); /* Write the power mode in the register */ rslt = setRegs(®_addr, &sensor_mode_reg_val, 1); } return rslt; } /*! * @brief This internal API puts the device to sleep mode. */ int8_t BME280::put_device_to_sleep() { int8_t rslt; uint8_t reg_data[4]; struct bme280_settings settings; rslt = getRegs(BME280_CTRL_HUM_ADDR, reg_data, 4); if (rslt == BME280_OK) { parse_device_settings(reg_data, &settings); rslt = softReset(); if (rslt == BME280_OK) { rslt = reload_device_settings(&settings); } } return rslt; } /*! * @brief This internal API reloads the already existing device settings in * the sensor after soft reset. */ int8_t BME280::reload_device_settings(const struct bme280_settings *settings) { int8_t rslt; rslt = set_osr_settings(BME280_ALL_SETTINGS_SEL, settings); if (rslt == BME280_OK) { rslt = set_filter_standby_settings(BME280_ALL_SETTINGS_SEL, settings); } return rslt; } #ifdef BME280_FLOAT_ENABLE /*! * @brief This internal API is used to compensate the raw temperature data and * return the compensated temperature data in double data type. */ double BME280::compensate_temperature(const struct bme280_uncomp_data *uncomp_data, struct bme280_calib_data *calib_data) { double var1; double var2; double temperature; double temperature_min = -40; double temperature_max = 85; var1 = ((double)uncomp_data->temperature) / 16384.0 - ((double)calib_data->dig_T1) / 1024.0; var1 = var1 * ((double)calib_data->dig_T2); var2 = (((double)uncomp_data->temperature) / 131072.0 - ((double)calib_data->dig_T1) / 8192.0); var2 = (var2 * var2) * ((double)calib_data->dig_T3); calib_data->t_fine = (int32_t)(var1 + var2); temperature = (var1 + var2) / 5120.0; if (temperature < temperature_min) { temperature = temperature_min; } else if (temperature > temperature_max) { temperature = temperature_max; } return temperature; } /*! * @brief This internal API is used to compensate the raw pressure data and * return the compensated pressure data in double data type. */ double BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data, const struct bme280_calib_data *calib_data) { double var1; double var2; double var3; double pressure; double pressure_min = 30000.0; double pressure_max = 110000.0; var1 = ((double)calib_data->t_fine / 2.0) - 64000.0; var2 = var1 * var1 * ((double)calib_data->dig_P6) / 32768.0; var2 = var2 + var1 * ((double)calib_data->dig_P5) * 2.0; var2 = (var2 / 4.0) + (((double)calib_data->dig_P4) * 65536.0); var3 = ((double)calib_data->dig_P3) * var1 * var1 / 524288.0; var1 = (var3 + ((double)calib_data->dig_P2) * var1) / 524288.0; var1 = (1.0 + var1 / 32768.0) * ((double)calib_data->dig_P1); /* avoid exception caused by division by zero */ if (var1) { pressure = 1048576.0 - (double) uncomp_data->pressure; pressure = (pressure - (var2 / 4096.0)) * 6250.0 / var1; var1 = ((double)calib_data->dig_P9) * pressure * pressure / 2147483648.0; var2 = pressure * ((double)calib_data->dig_P8) / 32768.0; pressure = pressure + (var1 + var2 + ((double)calib_data->dig_P7)) / 16.0; if (pressure < pressure_min) { pressure = pressure_min; } else if (pressure > pressure_max) { pressure = pressure_max; } } else /* Invalid case */ { pressure = pressure_min; } return pressure; } /*! * @brief This internal API is used to compensate the raw humidity data and * return the compensated humidity data in double data type. */ double BME280::compensate_humidity(const struct bme280_uncomp_data *uncomp_data, const struct bme280_calib_data *calib_data) { double humidity; double humidity_min = 0.0; double humidity_max = 100.0; double var1; double var2; double var3; double var4; double var5; double var6; var1 = ((double)calib_data->t_fine) - 76800.0; var2 = (((double)calib_data->dig_H4) * 64.0 + (((double)calib_data->dig_H5) / 16384.0) * var1); var3 = uncomp_data->humidity - var2; var4 = ((double)calib_data->dig_H2) / 65536.0; var5 = (1.0 + (((double)calib_data->dig_H3) / 67108864.0) * var1); var6 = 1.0 + (((double)calib_data->dig_H6) / 67108864.0) * var1 * var5; var6 = var3 * var4 * (var5 * var6); humidity = var6 * (1.0 - ((double)calib_data->dig_H1) * var6 / 524288.0); if (humidity > humidity_max) { humidity = humidity_max; } else if (humidity < humidity_min) { humidity = humidity_min; } return humidity; } #else /*! * @brief This internal API is used to compensate the raw temperature data and * return the compensated temperature data in integer data type. */ int32_t BME280::compensate_temperature(const struct bme280_uncomp_data *uncomp_data, struct bme280_calib_data *calib_data) { int32_t var1; int32_t var2; int32_t temperature; int32_t temperature_min = -4000; int32_t temperature_max = 8500; var1 = (int32_t)((uncomp_data->temperature / 8) - ((int32_t)calib_data->dig_T1 * 2)); var1 = (var1 * ((int32_t)calib_data->dig_T2)) / 2048; var2 = (int32_t)((uncomp_data->temperature / 16) - ((int32_t)calib_data->dig_T1)); var2 = (((var2 * var2) / 4096) * ((int32_t)calib_data->dig_T3)) / 16384; calib_data->t_fine = var1 + var2; temperature = (calib_data->t_fine * 5 + 128) / 256; if (temperature < temperature_min) { temperature = temperature_min; } else if (temperature > temperature_max) { temperature = temperature_max; } return temperature; } #ifdef BME280_64BIT_ENABLE /*! * @brief This internal API is used to compensate the raw pressure data and * return the compensated pressure data in integer data type with higher * accuracy. */ uint32_t BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data, const struct bme280_calib_data *calib_data) { int64_t var1; int64_t var2; int64_t var3; int64_t var4; uint32_t pressure; uint32_t pressure_min = 3000000; uint32_t pressure_max = 11000000; var1 = ((int64_t)calib_data->t_fine) - 128000; var2 = var1 * var1 * (int64_t)calib_data->dig_P6; var2 = var2 + ((var1 * (int64_t)calib_data->dig_P5) * 131072); var2 = var2 + (((int64_t)calib_data->dig_P4) * 34359738368); var1 = ((var1 * var1 * (int64_t)calib_data->dig_P3) / 256) + ((var1 * ((int64_t)calib_data->dig_P2) * 4096)); var3 = ((int64_t)1) * 140737488355328; var1 = (var3 + var1) * ((int64_t)calib_data->dig_P1) / 8589934592; /* To avoid divide by zero exception */ if (var1 != 0) { var4 = 1048576 - uncomp_data->pressure; var4 = (((var4 * INT64_C(2147483648)) - var2) * 3125) / var1; var1 = (((int64_t)calib_data->dig_P9) * (var4 / 8192) * (var4 / 8192)) / 33554432; var2 = (((int64_t)calib_data->dig_P8) * var4) / 524288; var4 = ((var4 + var1 + var2) / 256) + (((int64_t)calib_data->dig_P7) * 16); pressure = (uint32_t)(((var4 / 2) * 100) / 128); if (pressure < pressure_min) { pressure = pressure_min; } else if (pressure > pressure_max) { pressure = pressure_max; } } else { pressure = pressure_min; } return pressure; } #else /*! * @brief This internal API is used to compensate the raw pressure data and * return the compensated pressure data in integer data type. */ uint32_t BME280::compensate_pressure(const struct bme280_uncomp_data *uncomp_data, const struct bme280_calib_data *calib_data) { int32_t var1; int32_t var2; int32_t var3; int32_t var4; uint32_t var5; uint32_t pressure; uint32_t pressure_min = 30000; uint32_t pressure_max = 110000; var1 = (((int32_t)calib_data->t_fine) / 2) - (int32_t)64000; var2 = (((var1 / 4) * (var1 / 4)) / 2048) * ((int32_t)calib_data->dig_P6); var2 = var2 + ((var1 * ((int32_t)calib_data->dig_P5)) * 2); var2 = (var2 / 4) + (((int32_t)calib_data->dig_P4) * 65536); var3 = (calib_data->dig_P3 * (((var1 / 4) * (var1 / 4)) / 8192)) / 8; var4 = (((int32_t)calib_data->dig_P2) * var1) / 2; var1 = (var3 + var4) / 262144; var1 = (((32768 + var1)) * ((int32_t)calib_data->dig_P1)) / 32768; /* avoid exception caused by division by zero */ if (var1) { var5 = (uint32_t)((uint32_t)1048576) - uncomp_data->pressure; pressure = ((uint32_t)(var5 - (uint32_t)(var2 / 4096))) * 3125; if (pressure < 0x80000000) { pressure = (pressure << 1) / ((uint32_t)var1); } else { pressure = (pressure / (uint32_t)var1) * 2; } var1 = (((int32_t)calib_data->dig_P9) * ((int32_t)(((pressure / 8) * (pressure / 8)) / 8192))) / 4096; var2 = (((int32_t)(pressure / 4)) * ((int32_t)calib_data->dig_P8)) / 8192; pressure = (uint32_t)((int32_t)pressure + ((var1 + var2 + calib_data->dig_P7) / 16)); if (pressure < pressure_min) { pressure = pressure_min; } else if (pressure > pressure_max) { pressure = pressure_max; } } else { pressure = pressure_min; } return pressure; } #endif /*! * @brief This internal API is used to compensate the raw humidity data and * return the compensated humidity data in integer data type. */ uint32_t BME280::compensate_humidity(const struct bme280_uncomp_data *uncomp_data, const struct bme280_calib_data *calib_data) { int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t var5; uint32_t humidity; uint32_t humidity_max = 102400; var1 = calib_data->t_fine - ((int32_t)76800); var2 = (int32_t)(uncomp_data->humidity * 16384); var3 = (int32_t)(((int32_t)calib_data->dig_H4) * 1048576); var4 = ((int32_t)calib_data->dig_H5) * var1; var5 = (((var2 - var3) - var4) + (int32_t)16384) / 32768; var2 = (var1 * ((int32_t)calib_data->dig_H6)) / 1024; var3 = (var1 * ((int32_t)calib_data->dig_H3)) / 2048; var4 = ((var2 * (var3 + (int32_t)32768)) / 1024) + (int32_t)2097152; var2 = ((var4 * ((int32_t)calib_data->dig_H2)) + 8192) / 16384; var3 = var5 * var2; var4 = ((var3 / 32768) * (var3 / 32768)) / 128; var5 = var3 - ((var4 * ((int32_t)calib_data->dig_H1)) / 16); var5 = (var5 < 0 ? 0 : var5); var5 = (var5 > 419430400 ? 419430400 : var5); humidity = (uint32_t)(var5 / 4096); if (humidity > humidity_max) { humidity = humidity_max; } return humidity; } #endif /*! * @brief This internal API reads the calibration data from the sensor, parse * it and store in the device structure. */ int8_t BME280::get_calib_data() { int8_t rslt; uint8_t reg_addr = BME280_TEMP_PRESS_CALIB_DATA_ADDR; /* Array to store calibration data */ uint8_t calib_data[BME280_TEMP_PRESS_CALIB_DATA_LEN] = { 0 }; /* Read the calibration data from the sensor */ rslt = getRegs(reg_addr, calib_data, BME280_TEMP_PRESS_CALIB_DATA_LEN); if (rslt == BME280_OK) { /* Parse temperature and pressure calibration data and store * it in device structure */ parse_temp_press_calib_data(calib_data); reg_addr = BME280_HUMIDITY_CALIB_DATA_ADDR; /* Read the humidity calibration data from the sensor */ rslt = getRegs(reg_addr, calib_data, BME280_HUMIDITY_CALIB_DATA_LEN); if (rslt == BME280_OK) { /* Parse humidity calibration data and store it in * device structure */ parse_humidity_calib_data(calib_data); } } return rslt; } /*! * @brief This internal API interleaves the register address between the * register data buffer for burst write operation. */ void BME280::interleave_reg_addr(const uint8_t *reg_addr, uint8_t *temp_buff, const uint8_t *reg_data, uint8_t len) { uint8_t index; for (index = 1; index < len; index++) { temp_buff[(index * 2) - 1] = reg_addr[index]; temp_buff[index * 2] = reg_data[index]; } } /*! * @brief This internal API is used to parse the temperature and * pressure calibration data and store it in device structure. */ void BME280::parse_temp_press_calib_data(const uint8_t *reg_data) { calib_data.dig_T1 = BME280_CONCAT_BYTES(reg_data[1], reg_data[0]); calib_data.dig_T2 = (int16_t)BME280_CONCAT_BYTES(reg_data[3], reg_data[2]); calib_data.dig_T3 = (int16_t)BME280_CONCAT_BYTES(reg_data[5], reg_data[4]); calib_data.dig_P1 = BME280_CONCAT_BYTES(reg_data[7], reg_data[6]); calib_data.dig_P2 = (int16_t)BME280_CONCAT_BYTES(reg_data[9], reg_data[8]); calib_data.dig_P3 = (int16_t)BME280_CONCAT_BYTES(reg_data[11], reg_data[10]); calib_data.dig_P4 = (int16_t)BME280_CONCAT_BYTES(reg_data[13], reg_data[12]); calib_data.dig_P5 = (int16_t)BME280_CONCAT_BYTES(reg_data[15], reg_data[14]); calib_data.dig_P6 = (int16_t)BME280_CONCAT_BYTES(reg_data[17], reg_data[16]); calib_data.dig_P7 = (int16_t)BME280_CONCAT_BYTES(reg_data[19], reg_data[18]); calib_data.dig_P8 = (int16_t)BME280_CONCAT_BYTES(reg_data[21], reg_data[20]); calib_data.dig_P9 = (int16_t)BME280_CONCAT_BYTES(reg_data[23], reg_data[22]); calib_data.dig_H1 = reg_data[25]; } /*! * @brief This internal API is used to parse the humidity calibration data * and store it in device structure. */ void BME280::parse_humidity_calib_data(const uint8_t *reg_data) { int16_t dig_H4_lsb; int16_t dig_H4_msb; int16_t dig_H5_lsb; int16_t dig_H5_msb; calib_data.dig_H2 = (int16_t)BME280_CONCAT_BYTES(reg_data[1], reg_data[0]); calib_data.dig_H3 = reg_data[2]; dig_H4_msb = (int16_t)(int8_t)reg_data[3] * 16; dig_H4_lsb = (int16_t)(reg_data[4] & 0x0F); calib_data.dig_H4 = dig_H4_msb | dig_H4_lsb; dig_H5_msb = (int16_t)(int8_t)reg_data[5] * 16; dig_H5_lsb = (int16_t)(reg_data[4] >> 4); calib_data.dig_H5 = dig_H5_msb | dig_H5_lsb; calib_data.dig_H6 = (int8_t)reg_data[6]; } /*! * @brief This internal API is used to identify the settings which the user * wants to modify in the sensor. */ uint8_t BME280::are_settings_changed(uint8_t sub_settings, uint8_t desired_settings) { uint8_t settings_changed = FALSE; if (sub_settings & desired_settings) { /* User wants to modify this particular settings */ settings_changed = TRUE; } else { /* User don't want to modify this particular settings */ settings_changed = FALSE; } return settings_changed; } /*! * @brief This internal API is used to validate the device structure pointer for * null conditions. */ int8_t BME280::null_ptr_check() { int8_t rslt; if ((read == NULL) || (write == NULL) || (delay_ms == NULL)) { /* Device structure pointer is not valid */ rslt = BME280_E_NULL_PTR; } else { /* Device structure is fine */ rslt = BME280_OK; } return rslt; } BME280 bme280(BME280_I2C_ADDR_PRIM);